topic badge

1.03 Factorising

Worksheet
HCF factorisation and grouping in pairs
1

Factorise the following expressions:

a

10 x + 50

b

7 v - v^{2}

c

z^{2} + 4 z^{4}

d
6x^3 + 2x^2
e
10y + 15xy^2
f
6x^2 y - 12xy^3 +18y^4
2

Factorise the following expressions:

a
5 \left(a + b\right) + v \left(a + b\right)
b

6 y \left(y - 7\right) + 5 \left(7 - y\right)

c

2 f \left(g + h\right) + \left(g + h\right)^{2}

d

\left(y + 4\right) \left(y + 7\right) + x \left(y + 7\right)

e

2 \left(x + 9\right) \left(x - 5\right)^{3} + 3 \left(x + 9\right)^{2} \left(x - 5\right)^{2}

3

Complete the factorisation process below:

\begin{aligned}mnp+m+x+xnp&=⬚(np+1)+x(1+ ⬚)\\&= m(np+1)+x(⬚+1)\\&= (np+1)(⬚+⬚)\end{aligned}

4

Factorise the following expressions:

a
a^{3} + 5 a^{2} + a + 5
b

3 x + x z - 39 y - 13 y z

c

6 y - y w + w^{2} - 6 w

d

x^{2} - y^{2} - x - y

e
8xy+4x^2-6xy^2-3x^2 y
f
16ab+6b^2-32ac-12bc
5

If p - 10 q + p r - 10 q r = 72 and 1 + r = 12, find the value of p - 10 q by first factorising the expression p - 10 q + p r - 10 q r.

Difference of two squares and perfect squares
6

Factorise the following expressions:

a

k^{2} - 81

b

16 m^{2} - 81

c
9x^2 - 4y^2
d

x^{2} - \dfrac{4}{49}

e

\left(x + 13\right)^{2} - y^{2}

f

\left( 5 x + 4\right)^{2} - \left( 3 x - 1\right)^{2}

g

u^{2} m^{2} - 121

h
81x^2 y^2 - 25z^2
i

5 x^{2} - 320

j

x^{4} - 1

7

Factorise the following:

a

x^{2} + 12 x + 36

b

36 - 12 u + u^{2}

c

s^{2} - 2 s t + t^{2}

d
x^2-10x+25
e
4x^2+28x+49
f
25x^2-30xy+9y^2
g

x^{2} + 3 x + \dfrac{9}{4}

h

81 x^{2} + 36 x + 4

i

81 t^{2} + 72 t + 16

j

p^{3} + 8 p^{2} q + 16 p q^{2}

8

Simplify the following expression:

\sqrt{ x^{2} y^{2} + 18 x y^{2} + 81 y^{2}}

Quadratics
9

To factorise the quadratic x^{2} + 11 x + 24, we need to find two numbers.

a

What should the product of the two numbers equal?

b

What should the sum of the two numbers equal?

10

Complete the following statement:

\left(m + 8\right)(⬚)=m^{2} + 18 m + 80

11

Find the values of m and n in the following equation:

y^{2} + m y + 60 = \left(y + 10\right) \left(y + n\right)

12

Factorise the following:

a

x^{2} + 16 x + 60

b

t^{2} - 14 t + 48

c
x^2-3x-10
d
x^2 + 12x+35
e
x^2-20x+99
f
y^2-11y-12
g
h^2-6h-40
h

x^{2} - 2 x - 8

i

t^{2} + 6 t - 16

j

x^{4} - 10 x^{3} + 24 x^{2}

13

What is the largest possible integer value of k that will allow m^{2} + k m + 24 to be factorised?

14

Find an expression for the shaded area in the figure in terms of x. Write your answer in factorised form.

Non-monic quadratics
15

Factorise the following:

a
3 x^{2} - 21 x - 54
b

4 x^{2} + 40 x + 100

c

- 3 x^{2} + 12 x - 12.

d
2x^2 -11x-40
e
3y^2+28y+9
f
-6x^2 + 25x-14
g
10x^2+5x-30
h
8s^2 + 6s -54
i
12t^2-13t-4
16

Find the value of k that will make 16 x^{2} - 24 x + k a perfect square trinomial.

17

A cube has a surface area of \left(6 x^{2} + 36 x + 54\right) square units, where x > 0.

a

Factorise 6 x^{2} + 36 x + 54 completely.

b

Hence, find an expression for the length of a side of the cube.

18

Quadratic trinomials can be factorised using the identity:

a x^{2} + b x + c = \dfrac{\left( a x + m\right) \left( a x + n\right)}{a}where m + n = b and m n = a c.

Find the values m and n for the quadratic 4 x^{2} - 14 x + 12.

19

Consider the figure below:

a

Write an expression in expanded form for the area of the shaded region.

b

Write the expression for the area as a factorised quadratic.

Mixed factorisations
20

Factorise the following:

a

8 h j - 9 g h

b

x \left(y - z\right) - w \left(y - z\right)

c

5 y \left( 4 w + 3 x\right) - z \left( 4 w + 3 x\right)

d

8 x + x z - 16 y - 2 y z

e

7 x y + w x + 7 y z + w z

f

v^{2} - 49

g

121 - v^{2}

h

x^{2} - \dfrac{1}{4}

i

x^{2} + 16 x + 64

j

x^{2} - 20 x + 100

k

64 + 16 x + x^{2}

l

x^{2} + 11 x + 24

m

x^{2} + 17 x + 72

n

3 x^{2} - 21 x - 54

o

- 5 x^{2} + 10 x + 40

p

16 m^{2} - 81

q

5 k^{2} t + 40 k^{3} t^{3}

r

3 p q^{2} - 11 y p q + 3 r s q - 11 y r s

s

81 t^{2} + 72 t + 16

t

- 45 m n q - 72 m q

u

3 x^{2} + 24 x + 48

v

z^{2} + 4 z^{4}

w

7 x^{2} - 75 x + 50

x

x^{2} - 17 x + 60

y

2 y \left( 2 x^{2} + 3 z\right) - \left( 2 x^{2} + 3 z\right)

z

8 y \left(y - 4\right) + 3 \left(4 - y\right)

21

Factorise the following:

a

- h f - h j + h g

b

2 y z - 10 x y + 12 x y^{2} z

c

x^{2} + 2 x + 5 x + 10

d
x^{2} - 3 x + 8 x - 24
e

x^{2} - 19 x + 84

f

x^{2} - x - 30

g

9 x^{2} - 19 x + 10

h

6 x^{2} + 13 x + 6

i

3 f \left(g + h\right) + \left(g + h\right)^{2}

j

\left( 2 c - d\right) \left(c + 5 d\right) - 3 \left(d - 2 c\right)

k

a^{3} + 8 a^{2} + a + 8

l

4 x + 24 y z + 32 x y + 3 z

m

44 u v - 8 u^{2} v

n

- h f - h j + h g

o

x^{2} + x - 20

p

x^{2} - 3 x - 54

q

- 10 x^{2} - 7 x + 12

r

8 - 14 p - 49 p^{2}

s

2 y z - 10 x y + 12 x y^{2} z

t

3 p^{2} q^{2} + 4 p^{4} q^{4} + 5 p^{6} q^{6}

u

x^{2} - \dfrac{25}{121}

v

25 m^{2} - 49

w

- 4 x^{2} + 40 x - 100

x

- 8 - 6 x - x^{2}

y

- 12 + 7 x - x^{2}

z

56 - 41 b - 6 b^{2}

Sign up to access Worksheet
Get full access to our content with a Mathspace account

Outcomes

MA11-1

uses algebraic and graphical techniques to solve, and where appropriate, compare alternative solutions to problems

What is Mathspace

About Mathspace