topic badge
India
Class XI

Factorising and Expanding Complex Numbers

Lesson

Simplifying powers of complex numbers

The expression $(a+bi)^n$(a+bi)n, for non-negative integers $n$n, is expanded as any other binomial expansion, and then simplified by recalling that integer powers of $i$i become either $1$1, $-1$1, $i$i or $-i$i.

Here are some examples:

Example 1:

Expand and simplify $9i\left(x+7i\right)$9i(x+7i), leaving your answer in terms of $i$i.

 

Example 2:

Expand and simplify $\left(7+2i\right)\left(7-2i\right)$(7+2i)(72i).

 

Example 3:
$\left(2+3i\right)^2$(2+3i)2 $=$= $4+12i+9i^2$4+12i+9i2
  $=$= $4+12i-9$4+12i9
  $=$= $-5+12i$5+12i
     
Example 4:
$\left(1-i\right)^3$(1i)3 $=$= $1^3-3\left(1\right)^2\left(i\right)+3\left(1\right)\left(i\right)^2-i^3$133(1)2(i)+3(1)(i)2i3
  $=$= $1-3i-3+i$13i3+i
  $=$= $-2-2i$22i
     

 

Factoring

With factorisation, the key is to introduce the term $i^2=-1$i2=1 in the given expression whenever required. Here are a few examples:

Example 5:

Factorise the expression $3x^2+108$3x2+108. Leave your answer in terms of $i$i.

 

Example 6:
$x^2+9$x2+9 $=$= $x^2-9i^2$x29i2
  $=$= $\left(x+3i\right)\left(x-3i\right)$(x+3i)(x3i)
     
Example 7:
$4z^2+25$4z2+25 $=$= $4z^2-25i^2$4z225i2
  $=$= $\left(2z+5i\right)\left(2z-5i\right)$(2z+5i)(2z5i)
     
Example 8:
$4x^2-12ix-9$4x212ix9 $=$= $4x^2-12i+9i^2$4x212i+9i2
  $=$= $\left(2x-3i\right)^2$(2x3i)2
     
Example 9:
$6z^2+iz+2$6z2+iz+2 $=$= $6z^2+iz-2i^2$6z2+iz2i2
  $=$= $\left(3z+2i\right)\left(2z-i\right)$(3z+2i)(2zi)
     

 

Outcomes

11.A.CNQE.1

Need for complex numbers, especially √-1, to be motivated by inability to solve every quadratic equation. Brief description of algebraic properties of complex numbers. Argand plane and polar representation of complex numbers. Statement of Fundamental Theorem of Algebra, solution of quadratic equations in the complex number system.

What is Mathspace

About Mathspace