The expression $(a+bi)^n$(a+bi)n, for non-negative integers $n$n, is expanded as any other binomial expansion, and then simplified by recalling that integer powers of $i$i become either $1$1, $-1$−1, $i$i or $-i$−i.
Here are some examples:
Expand and simplify $9i\left(x+7i\right)$9i(x+7i), leaving your answer in terms of $i$i.
Expand and simplify $\left(7+2i\right)\left(7-2i\right)$(7+2i)(7−2i).
$\left(2+3i\right)^2$(2+3i)2 | $=$= | $4+12i+9i^2$4+12i+9i2 |
$=$= | $4+12i-9$4+12i−9 | |
$=$= | $-5+12i$−5+12i | |
$\left(1-i\right)^3$(1−i)3 | $=$= | $1^3-3\left(1\right)^2\left(i\right)+3\left(1\right)\left(i\right)^2-i^3$13−3(1)2(i)+3(1)(i)2−i3 |
$=$= | $1-3i-3+i$1−3i−3+i | |
$=$= | $-2-2i$−2−2i | |
With factorisation, the key is to introduce the term $i^2=-1$i2=−1 in the given expression whenever required. Here are a few examples:
Factorise the expression $3x^2+108$3x2+108. Leave your answer in terms of $i$i.
$x^2+9$x2+9 | $=$= | $x^2-9i^2$x2−9i2 |
$=$= | $\left(x+3i\right)\left(x-3i\right)$(x+3i)(x−3i) | |
$4z^2+25$4z2+25 | $=$= | $4z^2-25i^2$4z2−25i2 |
$=$= | $\left(2z+5i\right)\left(2z-5i\right)$(2z+5i)(2z−5i) | |
$4x^2-12ix-9$4x2−12ix−9 | $=$= | $4x^2-12i+9i^2$4x2−12i+9i2 |
$=$= | $\left(2x-3i\right)^2$(2x−3i)2 | |
$6z^2+iz+2$6z2+iz+2 | $=$= | $6z^2+iz-2i^2$6z2+iz−2i2 |
$=$= | $\left(3z+2i\right)\left(2z-i\right)$(3z+2i)(2z−i) | |