The graph of the hyperbola $\frac{\left(x-h\right)^2}{a^2}-\frac{\left(y-k\right)^2}{b^2}=1$(x−h)2a2−(y−k)2b2=1 is the same graph as the graph of $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$x2a2−y2b2=1, except the center is at $\left(h,k\right)$(h,k) rather than at the origin.
Given the graph of $\frac{x^2}{4}-\frac{y^2}{16}=1$x24−y216=1, find the graph of $\frac{\left(x-5\right)^2}{4}-\frac{\left(y-3\right)^2}{16}=1$(x−5)24−(y−3)216=1.