topic badge
India
Class X

Square and Cube Roots Using Factor trees

Lesson

In Trees with Multiple Branches we discussed how prime factors can be used to find highest common factors and lowest common multiples. We can also use prime factors to find square and cube roots.

Let's look at factor tree and discuss how.

Square roots

question 1

Evaluate: $\sqrt{1444}$1444

Think: Let's look for factors of $1444$1444 (it's most helpful if we can find numbers that make perfect squares).

So $1444$1444 can be written as $2\times2\times19\times19$2×2×19×19. In index notation, we would write this as $2^2\times19^2$22×192

Do:

$\sqrt{1444}$1444 $=$= $2\times19$2×19
  $=$= $38$38

 

Cube Roots

question 2

Evaluate: $\sqrt[3]{1728}$31728

Think

In index notation, we would write this as $3^3\times2^6$33×26 

Since we need to find the cube root, we need to divide our groups of factors by $3$3.

Do: 

$\sqrt[3]{1728}$31728 $=$= $3\times2^2$3×22
  $=$= $12$12

Worked Examples

Question 1

Use a factor tree to help find the $\sqrt{196}$196

a) Write $196$196 as a product of prime factors in index notation. 

b) Hence find the $\sqrt{196}$196

 
Question 2

Given $85184=11^3\times2^6$85184=113×26

Find $\sqrt[3]{85184}$385184

 

Question 3

We want to find $\sqrt[3]{729}$3729

a) Write $729$729 as the product of three identical 

b) Hence evaluate $\sqrt[3]{729}$3729

Outcomes

10.NS.RN.1

Euclid’s division lemma, Fundamental Theorem of Arithmetic – statements after reviewing work done earlier and after illustrating and motivating through examples. Proofs of results – irrationality of √2,√3,√5, decimal expansions of rational numbers in terms of terminating/non-terminating recurring decimals.

What is Mathspace

About Mathspace