Let's review the rules for areas of quadrilaterals, triangles and circles that we have covered so far.
![]() |
|
Rectangle |
$\text{Area of a Rectangle }=\text{length }\times\text{width }$Area of a Rectangle =length ×width $A=L\times W$A=L×W |
![]() |
|
Square |
$\text{Area of a Square}=side\times side$Area of a Square=side×side $A=S\times S$A=S×S $A=S^2$A=S2 |
![]() |
|
Triangle |
$\text{Area of a triangle }=\text{half of the area of the rectangle with base and height the same as triangle }$Area of a triangle =half of the area of the rectangle with base and height the same as triangle $\text{Area of a triangle }=\frac{1}{2}\times\text{base }\times\text{height }$Area of a triangle =12×base ×height $A=\frac{1}{2}bh$A=12bh |
![]() |
|
Parallelogram |
$\text{Area of a Parallelogram }=\text{Base }\times\text{Height }$Area of a Parallelogram =Base ×Height $A=b\times h$A=b×h |
![]() |
|
Trapezium |
$\text{Area of a Trapezium}=\frac{1}{2}\times\left(\text{Base 1 }+\text{Base 2 }\right)\times\text{Height }$Area of a Trapezium=12×(Base 1 +Base 2 )×Height $A=\frac{1}{2}\times\left(a+b\right)\times h$A=12×(a+b)×h |
![]() |
|
Kite |
$\text{Area of a Kite}=\frac{1}{2}\times\text{diagonal 1}\times\text{diagonal 2}$Area of a Kite=12×diagonal 1×diagonal 2 $A=\frac{1}{2}\times x\times y$A=12×x×y |
![]() |
|
Rhombus |
$\text{Area of a Rhombus }=\frac{1}{2}\times\text{diagonal 1}\times\text{diagonal 2}$Area of a Rhombus =12×diagonal 1×diagonal 2 $A=\frac{1}{2}\times x\times y$A=12×x×y |
![]() |
|
Circle |
$\text{Area of a circle}=\pi r^2$Area of a circle=πr2 |
Find the area of the rectangle shown.
Find the area of the parallelogram shown.
A parallelogram with the horizontal top side labeled 15 cm, suggesting the measurement of its base. A vertical dashed line is drawn beyond the parallelogram, connected to a horizontal dashed line perpendicular to the horizontal top side. This vertical dashed line is labeled 14 cm, suggesting the measurement of the parallelogram's height perpendicular to the base.
Find the shaded area shown in the figure.