topic badge
CanadaON
Grade 12

Solve Cubic Equations

Lesson

There are $2$2 relatively simple methods that can be used to solve the more basic forms of cubic equations. 

The first uses the concepts studied here on the null factor theorem.  So if we can factor a cubic equation fully, then we can solve the cubic by solving each of the individual factored elements.  

There are many techniques for factoring cubics, these are covered in the factoring section.

We can factor by:

  • using the greatest common factor
  • factor special forms such as the sum and difference of cubes
  • identifying a single factor, then using division to establish the remaining quadratic. From here you would employ any of the factoring methods for quadratics.  

There is a great benefit to factoring equations in order to solve them, in order to understand why we need to think about ZERO.

The property of $0$0 is very special.  The ONLY way two, three or any number of things that are being multiplied can have the answer of $0$0, is if one of those things are $0$0 themselves.  

So if I have $2$2 factors, like $a$a and $b$b , and I multiply them together and they equal $0$0. Then one of those factors $a$a or $b$b MUST be $0$0.  A written solution to a question like this would be similar to the following, 

If $a\times b=0$a×b=0 then $a=0$a=0   or  $b=0$b=0

 

Here is an example

Solve the equation $x^3-36x=0$x336x=0

$x^3-36x=0$x336x=0 becomes $x\left(x^2-36\right)=0$x(x236)=0

and now we can use the difference of $2$2 squares the factor further getting

$x\left(x-6\right)\left(x+6\right)=0$x(x6)(x+6)=0

Remembering that the only way a multiplication can result in $0$0 is if one of the elements is $0$0, then we can say that for $x\left(x-6\right)\left(x+6\right)=0$x(x6)(x+6)=0, either

$x=0$x=0  or

$\left(x-6\right)=0$(x6)=0, so $x=6$x=6   or

$\left(x+6\right)=0$(x+6)=0, so $x=-6$x=6.

Thus the solution to $x\left(x-6\right)\left(x+6\right)=0$x(x6)(x+6)=0 is $x=0,\pm6$x=0,±6

The second option is to manipulate the equation using rules of algebra to solve.  Equations that can be solved like this generally have only an $x^3$x3 and constant terms, no $x^2$x2 terms and no $x$x terms.

This question for example could be solved in this manner.  

$125x^3-8$125x38 $=$= $0$0
$125x^3$125x3 $=$= $8$8
$x^3$x3 $=$= $\frac{8}{125}$8125
$x$x $=$= $\frac{2}{5}$25

 

 

 

Worked Examples

Question 1

Solve the following equation:

$x^3-125=0$x3125=0

QUESTION 2

Solve the equation $x^3=-8$x3=8.

QUESTION 3

The cubic $P\left(x\right)=x^3-2x^2-5x+6$P(x)=x32x25x+6 has a factor of $x-3$x3.

  1. Solve for the roots of the cubic. If there is more than one root, state the solutions on the same line separated by commas.

 

 

 

Outcomes

12CT.B.3.1

Solve polynomial equations in one variable, of degree no higher than four (e.g., x^2 – 4x = 0, x^4 – 16 = 0, 3x^2 + 5x + 2 = 0), by selecting and applying strategies (i.e., common factoring; difference of squares; trinomial factoring), and verify solutions using technology

12CT.B.3.2

Solve problems algebraically that involve polynomial functions and equations of degree no higher than four, including those arising from real-world applications

What is Mathspace

About Mathspace