topic badge
CanadaON
Grade 12

Distributive law

Lesson

We've already learnt how to simplify expressions with grouping symbols. To expand an expression like $3\left(x+2\right)$3(x+2) or $5\left(2y-1\right)$5(2y1) we use the distributive law:

The Distributive Law

To expand an expression of the form $A\left(B+C\right)$A(B+C), we use the property:

$A\left(B+C\right)$A(B+C) $=$= $A\times B+A\times C$A×B+A×C
  $=$= $AB+AC$AB+AC

So far we have used the distributive law to simplify expressions involving multiplication of constants with variables. Now we will look at how to use the distributive law to simplify expressions involving multiplication of variables. We will need to use the multiplication exponent law.

Example 1

Expand: $5x\left(6x^6-3y\right)$5x(6x63y)?

Think: We'll expand the brackets using the distributive law:

To evaluate the multiplications $5x\times6x^6$5x×6x6 and $5x\times\left(-3y\right)$5x×(3y), we will use the power rule:

The Power Rule

To multiply like terms with like bases, (e.g. $x$x and $x$x) we use the rule:

$x^a\times x^b$xa×xb $=$= $x^{a+b}$xa+b

For example,

$x\times x^2$x×x2 $=$= $x^{1+2}$x1+2
  $=$= $x^3$x3

Therefore:

$5x\times6x^6$5x×6x6 $=$= $30x^7$30x7
$5x\times\left(-3y\right)$5x×(3y) $=$= $-15xy$15xy

Do: $30x^7-15xy$30x715xy

 

Examples

Question 1

Expand the following:

$r\left(r+5\right)$r(r+5)

Question 2

Question 3

Expand $6u^7\left(9u^7+9u^6\right)$6u7(9u7+9u6)

Question 4

Expand:

$7wy\left(y+w\right)$7wy(y+w)

Outcomes

12CT.B.3.4

Expand and simplify polynomial expressions involving more than one variable [e.g., simplify – 2xy(3x^2 y^3 – 5x^3 y^2 )], including expressions arising from real-world applications

What is Mathspace

About Mathspace