topic badge
CanadaON
Grade 12

Binomial expansions and coefficients

Lesson

Our final step in this journey is to connect Pascal's Triangle. How are the rows of the triangle connected to the combinations $\nCr{n}{r}$nCr? How can the rows identify the value of the coefficients in a binomial expansion?

What we get when we combine them is the knowledge that for an expansion of $\left(a+b\right)^n$(a+b)n the coefficients will be dictated by the combinations of $\nCr{n}{0}$nC0, $\nCr{n}{1}$nC1, $\nCr{n}{2}$nC2, $\dots$, $\nCr{n}{n}$nCn, also notated as $\binom{n}{0}$(n0),$\binom{n}{1}$(n1),$\binom{n}{2}$(n2),$...$...,$\binom{n}{n}$(nn)

So this results in the expansion looking like this

$(a+b)^n=$(a+b)n=$\binom{n}{0}$(n0)$a^n$an$+$+$\binom{n}{1}$(n1)$a^{n-1}b^1+$an1b1+$\binom{n}{2}$(n2)$a^{n-2}b^2+$an2b2+$\binom{n}{3}$(n3)$a^{n-3}b^3+...+$an3b3+...+$\binom{n}{r}$(nr)$a^{n-r}b^r+...+$anrbr+...+$\binom{n}{n-1}$(nn1)$a^1b^{n-1}+$a1bn1+$\binom{n}{n}$(nn)$b^n$bn

Thus any particular term can be found using $\binom{n}{r}$(nr)$a^{\left(n-r\right)}$a(nr)$b^r$br.  

 

Example 1

Expand $(2x+3)^5$(2x+3)5.

$(a+b)^n=$(a+b)n=$\binom{n}{0}$(n0)$a^n+$an+$\binom{n}{1}$(n1)$a^{n-1}b^1+$an1b1+$\binom{n}{2}$(n2)$a^{n-2}b^2+$an2b2+$\binom{n}{3}$(n3)$a^{n-3}b^3+...+$an3b3+...+$\binom{n}{r}$(nr)$a^{n-r}b^r+...$anrbr+...$\binom{n}{n-1}$(nn1)$a^1b^{n-1}+$a1bn1+$\binom{n}{n}$(nn)$b^n$bn

$(2x+3)^5=$(2x+3)5=$\binom{5}{0}$(50)$(2x)^5+$(2x)5+$\binom{5}{1}$(51)$(2x)^{5-1}3^1+$(2x)5131+$\binom{5}{2}$(52)$(2x)^{5-2}3^2+$(2x)5232+$\binom{5}{3}$(53)$(2x)^{5-3}3^3+$(2x)5333+$\binom{5}{4}$(54)$(2x)^13^{5-1}+$(2x)1351+$\binom{5}{5}$(55)$(3)^5$(3)5

$(2x+3)^5=1(2x)^5+5(2x)^43^1+10(2x)^33^2+10(2x)^23^3+5(2x)^13^4+1(3)^5$(2x+3)5=1(2x)5+5(2x)431+10(2x)332+10(2x)233+5(2x)134+1(3)5

$(2x+3)^5=32x^5+15(16x^4)+90(8x^3)+270(4x^2)+810x+243$(2x+3)5=32x5+15(16x4)+90(8x3)+270(4x2)+810x+243

$(2x+3)^5=32x^5+240x^4+720x^3+1080x^2+810x+243$(2x+3)5=32x5+240x4+720x3+1080x2+810x+243

 

Example 2

What is the seventh term in the expansion of $(m-2n)^{12}$(m2n)12?

We need to construct the seventh term from this $\binom{n}{r}$(nr)$a^{\left(n-r\right)}$a(nr)$b^r$br where $n$n is $12$12 and $r$r is $6$6

The coefficient $\binom{n}{r}$(nr) where $n$n is $12$12 and $r$r is $6$6 is $\binom{12}{6}=924$(126)=924.

The term will have both $m$m and $(2n)$(2n) components. The $m$m component would be $m^{12-6}=m^6$m126=m6

The $2n$2n component would be $(2n)^6=64n^6$(2n)6=64n6.

So putting that altogether will give us $924m^6\times64n^6=59136m^6n^6$924m6×64n6=59136m6n6.

 

More Worked Examples

QUESTION 1

How many terms does the expansion of $\left(9x+6y\right)^8$(9x+6y)8 have?

QUESTION 2

Using the binomial theorem, determine the missing powers in the following expansion.

  1. $\left(4p+3q\right)^3=\nCr{3}{0}\left(4p\right)^{\editable{}}\left(3q\right)^0+\nCr{3}{1}\left(4p\right)^{\editable{}}\left(3q\right)^1+\nCr{3}{2}\left(4p\right)^{\editable{}}\left(3q\right)^2+\nCr{3}{3}\left(4p\right)^{\editable{}}\left(3q\right)^3$(4p+3q)3=3C0(4p)(3q)0+3C1(4p)(3q)1+3C2(4p)(3q)2+3C3(4p)(3q)3

QUESTION 3

Expand $\left(\sqrt{2}x+\frac{1}{y}\right)^4$(2x+1y)4.

Outcomes

12D.A.2.4

Make connections, through investigation, between combinations and Pascal’s triangle

What is Mathspace

About Mathspace