If the sine and cosine sum and difference formulas are written down side-by-side it becomes apparent that useful results can be obtained by adding some of them them in pairs.
$\sin\left(A+B\right)\equiv\sin A\cos B+\sin B\cos A$sin(A+B)≡sinAcosB+sinBcosA | $\left(1\right)$(1) |
$\sin\left(A-B\right)\equiv\sin A\cos B-\sin B\cos A$sin(A−B)≡sinAcosB−sinBcosA | $\left(2\right)$(2) |
$\cos\left(A+B\right)\equiv\cos A\cos B-\sin A\sin B$cos(A+B)≡cosAcosB−sinAsinB | $\left(3\right)$(3) |
$\cos\left(A-B\right)\equiv\cos A\cos B+\sin A\sin B$cos(A−B)≡cosAcosB+sinAsinB | $\left(4\right)$(4) |
If we add (1) and (2), we have
$\sin\left(A+B\right)+\sin\left(A-B\right)=2\sin A\cos B$sin(A+B)+sin(A−B)=2sinAcosB | $\left(5\right)$(5) |
Similarly, from (3) and (4) we obtain, by addition,
$\cos\left(A+B\right)+\cos\left(A-B\right)=2\cos A\cos B$cos(A+B)+cos(A−B)=2cosAcosB | $\left(6\right)$(6) |
and by subtraction,
$\cos\left(A-B\right)-\cos\left(A+B\right)=2\sin A\sin B$cos(A−B)−cos(A+B)=2sinAsinB | $\left(7\right)$(7) |
Equations (5), (6) and (7) give the following three product formulas:
$\sin A\cos B=\frac{1}{2}\left(\sin\left(A+B\right)+\sin\left(A-B\right)\right)$sinAcosB=12(sin(A+B)+sin(A−B)) | $\left(5a\right)$(5a) |
$\cos A\cos B=\frac{1}{2}\left(\cos\left(A+B\right)+\cos\left(A-B\right)\right)$cosAcosB=12(cos(A+B)+cos(A−B)) | $\left(6a\right)$(6a) |
$$ | $\left(7a\right)$(7a) |
By re-writing (5a), (6a) and (7a) we can obtain formulas for the sums and differences of sines and cosines. To do this, we let $U=A+B$U=A+B and $V=A-B$V=A−B. Then, by solving these equations for $A$A and $B$B we get $A=\frac{U+V}{2}$A=U+V2 and $B=\frac{U-V}{2}$B=U−V2.
Thus, by substituting for $A$A and $B$B in the product formulas and rearranging slightly, we obtain:
$\sin U+\sin V=2\sin\frac{U+V}{2}\cos\frac{U-V}{2}$sinU+sinV=2sinU+V2cosU−V2 | $\left(8\right)$(8) |
$\cos U+\cos V=2\cos\frac{U+V}{2}\cos\frac{U-V}{2}$cosU+cosV=2cosU+V2cosU−V2 | $\left(9\right)$(9) |
$\cos V-\cos U=2\sin\frac{U+V}{2}\sin\frac{U-V}{2}$cosV−cosU=2sinU+V2sinU−V2 | $\left(10\right)$(10) |
and from (8), using the fact that $-\sin V=\sin\left(-V\right),$−sinV=sin(−V),we can write
$\sin U-\sin V=2\sin\frac{U-V}{2}\cos\frac{U+V}{2}$sinU−sinV=2sinU−V2cosU+V2 | $\left(11\right)$(11) |
Another type of sum, with a very useful simplification, occurs between different multiples of the sine and cosine of identical angles.
The expression $a\sin\theta+b\cos\theta$asinθ+bcosθ can be written in the form $r\sin\left(\theta+\alpha\right)$rsin(θ+α). The latter expands to $r\left(\sin\theta\cos\alpha+\cos\theta\sin\alpha\right)$r(sinθcosα+cosθsinα).
On comparing this with the original expression, we see that $a=r\cos\alpha$a=rcosα and $b=r\sin\alpha$b=rsinα.
Hence, $r=\sqrt{a^2+b^2}$r=√a2+b2 and $\tan\alpha=\frac{b}{a}$tanα=ba. Then, using the notation $\tan^{-1}$tan−1 for the inverse tangent function, we can write
$$ | $\left(12\right)$(12) |
Express $\cos255^\circ-\cos45^\circ$cos255°−cos45° more simply.
Using (10), $\cos V-\cos U=2\sin\frac{U+V}{2}\sin\frac{U-V}{2}$cosV−cosU=2sinU+V2sinU−V2, we have
$\cos255^\circ-\cos45^\circ=2\sin\frac{255^\circ+45^\circ}{2}\sin\frac{45^\circ-255^\circ}{2}$cos255°−cos45°=2sin255°+45°2sin45°−255°2
That is,
$\cos255^\circ-\cos45^\circ=$cos255°−cos45°= | $2\sin150^\circ\sin\left(-105\right)^\circ$2sin150°sin(−105)° |
$=$= | $-2\sin30^\circ\sin75^\circ$−2sin30°sin75° |
$=$= | $-\sin75^\circ$−sin75° |
Using a half-angle formula, $$ we can further simplify this to the exact value $-\frac{1}{2}\sqrt{2+\sqrt{3}}$−12√2+√3.
Express $\cos\left(3x+2y\right)\cos\left(x-y\right)$cos(3x+2y)cos(x−y) as a sum or difference of two trigonometric functions.
Express $\sin\left(6x\right)+\sin\left(4x\right)$sin(6x)+sin(4x) as a product of two trigonometric functions.
By using the product-to-sum identities, rewrite $2\sin53^\circ\cos116^\circ$2sin53°cos116° as a sum or difference of two trigonometric values.