topic badge
CanadaON
Grade 12

Sums and differences as products (deg)

Lesson

Products

If the sine and cosine sum and difference formulas are written down side-by-side it becomes apparent that useful results can be obtained by adding some of them them in pairs.

$\sin\left(A+B\right)\equiv\sin A\cos B+\sin B\cos A$sin(A+B)sinAcosB+sinBcosA $\left(1\right)$(1)
$\sin\left(A-B\right)\equiv\sin A\cos B-\sin B\cos A$sin(AB)sinAcosBsinBcosA $\left(2\right)$(2)
$\cos\left(A+B\right)\equiv\cos A\cos B-\sin A\sin B$cos(A+B)cosAcosBsinAsinB $\left(3\right)$(3)
$\cos\left(A-B\right)\equiv\cos A\cos B+\sin A\sin B$cos(AB)cosAcosB+sinAsinB $\left(4\right)$(4)

 

 

 

 

If we add (1) and (2), we have 

$\sin\left(A+B\right)+\sin\left(A-B\right)=2\sin A\cos B$sin(A+B)+sin(AB)=2sinAcosB $\left(5\right)$(5)

Similarly, from (3) and (4) we obtain, by addition,

$\cos\left(A+B\right)+\cos\left(A-B\right)=2\cos A\cos B$cos(A+B)+cos(AB)=2cosAcosB $\left(6\right)$(6)

 

 

and by subtraction,

$\cos\left(A-B\right)-\cos\left(A+B\right)=2\sin A\sin B$cos(AB)cos(A+B)=2sinAsinB $\left(7\right)$(7)

Equations (5), (6) and (7) give the following three product formulas:

$\sin A\cos B=\frac{1}{2}\left(\sin\left(A+B\right)+\sin\left(A-B\right)\right)$sinAcosB=12(sin(A+B)+sin(AB)) $\left(5a\right)$(5a)
$\cos A\cos B=\frac{1}{2}\left(\cos\left(A+B\right)+\cos\left(A-B\right)\right)$cosAcosB=12(cos(A+B)+cos(AB)) $\left(6a\right)$(6a)
$$ $\left(7a\right)$(7a)

Sums

By re-writing  (5a), (6a) and (7a) we can obtain formulas for the sums and differences of sines and cosines. To do this, we let $U=A+B$U=A+B and $V=A-B$V=AB. Then, by solving these equations for $A$A and $B$B we get $A=\frac{U+V}{2}$A=U+V2 and $B=\frac{U-V}{2}$B=UV2

Thus, by substituting for $A$A and $B$B in the product formulas and rearranging slightly, we obtain:

$\sin U+\sin V=2\sin\frac{U+V}{2}\cos\frac{U-V}{2}$sinU+sinV=2sinU+V2cosUV2 $\left(8\right)$(8)
$\cos U+\cos V=2\cos\frac{U+V}{2}\cos\frac{U-V}{2}$cosU+cosV=2cosU+V2cosUV2 $\left(9\right)$(9)
$\cos V-\cos U=2\sin\frac{U+V}{2}\sin\frac{U-V}{2}$cosVcosU=2sinU+V2sinUV2 $\left(10\right)$(10)

 

 

 

 

and from (8), using the fact that $-\sin V=\sin\left(-V\right),$sinV=sin(V),we can write

$\sin U-\sin V=2\sin\frac{U-V}{2}\cos\frac{U+V}{2}$sinUsinV=2sinUV2cosU+V2 $\left(11\right)$(11)

 

 

Another type of sum, with a very useful simplification, occurs between different multiples of the sine and cosine of identical angles.

The expression $a\sin\theta+b\cos\theta$asinθ+bcosθ  can be written in the form $r\sin\left(\theta+\alpha\right)$rsin(θ+α). The latter expands to $r\left(\sin\theta\cos\alpha+\cos\theta\sin\alpha\right)$r(sinθcosα+cosθsinα).

On comparing this with the original expression, we see that $a=r\cos\alpha$a=rcosα and $b=r\sin\alpha$b=rsinα.

Hence, $r=\sqrt{a^2+b^2}$r=a2+b2 and $\tan\alpha=\frac{b}{a}$tanα=ba. Then, using the notation $\tan^{-1}$tan1 for the inverse tangent function, we can write

$$ $\left(12\right)$(12)

 

 

Example

Express $\cos255^\circ-\cos45^\circ$cos255°cos45° more simply.

Using (10), $\cos V-\cos U=2\sin\frac{U+V}{2}\sin\frac{U-V}{2}$cosVcosU=2sinU+V2sinUV2, we have 

$\cos255^\circ-\cos45^\circ=2\sin\frac{255^\circ+45^\circ}{2}\sin\frac{45^\circ-255^\circ}{2}$cos255°cos45°=2sin255°+45°2sin45°255°2

That is,

$\cos255^\circ-\cos45^\circ=$cos255°cos45°= $2\sin150^\circ\sin\left(-105\right)^\circ$2sin150°sin(105)°
$=$= $-2\sin30^\circ\sin75^\circ$2sin30°sin75°
$=$= $-\sin75^\circ$sin75°

Using a half-angle formula, $$ we can further simplify this to the exact value $-\frac{1}{2}\sqrt{2+\sqrt{3}}$122+3.

Worked Examples

QUESTION 1

Express $\cos\left(3x+2y\right)\cos\left(x-y\right)$cos(3x+2y)cos(xy) as a sum or difference of two trigonometric functions.

QUESTION 2

Express $\sin\left(6x\right)+\sin\left(4x\right)$sin(6x)+sin(4x) as a product of two trigonometric functions.

QUESTION 3

By using the product-to-sum identities, rewrite $2\sin53^\circ\cos116^\circ$2sin53°cos116° as a sum or difference of two trigonometric values.

Outcomes

12F.B.3.2

Explore the algebraic development of the compound angle formulas, and use the formulas to determine exact values of trigonometric ratios

What is Mathspace

About Mathspace