The Angle Sum and Difference identities allow us to expand expressions like $\sin\left(\alpha+\beta\right)$sin(α+β). One way to establish these identities involves first establishing the cosine rule and then using it in an arbitrary triangle with vertices at the centre and circumference of the unit circle. In this chapter, we assume that the cosine rule is already available to us.
We can write two different expressions for the distance $PQ$PQ. First, we use the cosine rule.
The arms of the triangle have unit length because they are radii of the unit circle. Therefore, we have $PQ^2=1^2+1^2-2\times1\times1\times\cos\left(\beta-\alpha\right)$PQ2=12+12−2×1×1×cos(β−α). That is,
$PQ^2=2-2\cos\left(\beta-\alpha\right)$PQ2=2−2cos(β−α)
Next, we write the distance $PQ$PQ using the coordinates of the points and the Distance Formula, which is just an application of Pythagoras's theorem. We have,
$PQ^2=\left(\cos\alpha-\cos\beta\right)^2+\left(\sin\alpha-\sin\beta\right)^2$PQ2=(cosα−cosβ)2+(sinα−sinβ)2
Equating the two expressions gives
$2-2\cos\left(\beta-\alpha\right)\equiv\left(\cos\alpha-\cos\beta\right)^2+\left(\sin\alpha-\sin\beta\right)^2$2−2cos(β−α)≡(cosα−cosβ)2+(sinα−sinβ)2
and this expands first to
$2-2\cos\left(\beta-\alpha\right)\equiv\cos^2\alpha-2\cos\alpha\cos\beta+\cos^2\beta+\sin^2\alpha-2\sin\alpha\sin\beta+\sin^2\beta$2−2cos(β−α)≡cos2α−2cosαcosβ+cos2β+sin2α−2sinαsinβ+sin2β
and then making use of the Pythagorean identity, $\sin^2\theta+\cos^2\theta\equiv1$sin2θ+cos2θ≡1, we simplify this to
$\cos\left(\beta-\alpha\right)\equiv\cos\beta\cos\alpha+\sin\beta\sin\alpha$cos(β−α)≡cosβcosα+sinβsinα
From this we obtain an expression for $\cos\left(\beta+\alpha\right)$cos(β+α) by writing this as
$\cos\left(\beta-\left(-\alpha\right)\right)$cos(β−(−α)) and applying the previous formula. Thus,
$\cos\left(\beta+\alpha\right)\equiv\cos\beta\cos\alpha-\sin\beta\sin\alpha$cos(β+α)≡cosβcosα−sinβsinα
We obtain the corresponding formulas for sine by using the complementary angle fact: $\sin\theta=\cos\left(\frac{\pi}{2}-\theta\right)$sinθ=cos(π2−θ).
If we write $\sin\left(\beta-\alpha\right)$sin(β−α) as $\cos\left(\frac{\pi}{2}-\left(\beta-\alpha\right)\right)$cos(π2−(β−α)), it follows that
$\sin\left(\beta-\alpha\right)=\cos\left(\left(\frac{\pi}{2}-\beta\right)+\alpha\right)=\cos\left(\frac{\pi}{2}-\beta\right)\cos\alpha-\sin\left(\frac{\pi}{2}-\beta\right)\sin\alpha$sin(β−α)=cos((π2−β)+α)=cos(π2−β)cosα−sin(π2−β)sinα
That is,
$\sin\left(\beta-\alpha\right)\equiv\sin\beta\cos\alpha-\cos\beta\sin\alpha$sin(β−α)≡sinβcosα−cosβsinα,
and similarly,
$\sin\left(\beta+\alpha\right)\equiv\sin\beta\cos\alpha+\cos\beta\sin\alpha$sin(β+α)≡sinβcosα+cosβsinα
The corresponding formulas for the tangent function are obtained by expanding $\tan\left(\alpha+\beta\right)=\frac{\sin\left(\alpha+\beta\right)}{\cos\left(\alpha+\beta\right)}$tan(α+β)=sin(α+β)cos(α+β)
After some simplification, we have
$\tan\left(\alpha+\beta\right)=\frac{\tan\alpha+\tan\beta}{1-\tan\alpha\tan\beta}$tan(α+β)=tanα+tanβ1−tanαtanβ
and
$\tan\left(\alpha-\beta\right)=\frac{\tan\alpha-\tan\beta}{1+\tan\alpha\tan\beta}$tan(α−β)=tanα−tanβ1+tanαtanβ
Find an 'exact value' expression for $\sin\frac{\pi}{12}$sinπ12
We notice that $\frac{\pi}{12}=\frac{\pi}{4}-\frac{\pi}{6}$π12=π4−π6. So, $\sin\frac{\pi}{12}=\sin\left(\frac{\pi}{4}-\frac{\pi}{6}\right)=\sin\frac{\pi}{4}\cos\frac{\pi}{6}-\sin\frac{\pi}{6}\cos\frac{\pi}{4}$sinπ12=sin(π4−π6)=sinπ4cosπ6−sinπ6cosπ4
Then, using known exact values, we have $\sin\frac{\pi}{12}=\frac{1}{\sqrt{2}}.\frac{\sqrt{3}}{2}-\frac{1}{2}.\frac{1}{\sqrt{2}}=\frac{\sqrt{6}-\sqrt{2}}{4}$sinπ12=1√2.√32−12.1√2=√6−√24
Given that $\sin A=\frac{24}{25}$sinA=2425 and $\cos B=\frac{20}{29}$cosB=2029, find the exact value of:
$\sin\left(A+B\right)$sin(A+B)
$\cos\left(A-B\right)$cos(A−B)
Find the exact value of $\cos\frac{11\pi}{12}$cos11π12.