Solve $3\log x=\log125$3logx=log125.
Solve $\log_{10}x+\log_{10}6=\log_{10}48$log10x+log106=log1048 for $x$x.
Solve $\log_72x+\log_73=3$log72x+log73=3 for $x$x.
Solve $\log_{10}x-\log_{10}38=\log_{10}37$log10x−log1038=log1037 for $x$x.
Determine, with technology, the approximate logarithm of a number to any base, including base 10