topic badge
CanadaON
Grade 12

Rewriting rational functions

Interactive practice questions

Consider the function $f\left(x\right)=\frac{3x^2+8}{x^2}$f(x)=3x2+8x2.

Rewrite $f\left(x\right)$f(x) in the form $f\left(x\right)=k+\frac{a}{x^2}$f(x)=k+ax2.

Easy
< 1min

Consider the function $f\left(x\right)=\frac{3+2x^2}{x^2}$f(x)=3+2x2x2.

Rewrite $f\left(x\right)$f(x) in the form $f\left(x\right)=\frac{a}{x^2}+k$f(x)=ax2+k.

Easy
< 1min

Consider the function $f\left(x\right)=\frac{x+9}{x-5}$f(x)=x+9x5.

Rewrite $f\left(x\right)$f(x) in the form $f\left(x\right)=\frac{a}{x-h}+k$f(x)=axh+k.

Easy
1min

Consider the function $f\left(x\right)=\frac{2x+7}{x-5}$f(x)=2x+7x5.

Rewrite $f\left(x\right)$f(x) in the form $f\left(x\right)=\frac{a}{x-h}+k$f(x)=axh+k.

Medium
1min
Sign up to access Practice Questions
Get full access to our content with a Mathspace account

Outcomes

12F.C.2.2

Determine, through investigation with and without technology, key features of the graphs of rational functions that have linear expressions in the numerator and denominator and make connections between the algebraic and graphical representations of these rational functions

What is Mathspace

About Mathspace