topic badge
CanadaON
Grade 11

Mixed expressions using exponent laws

Lesson

We've learnt a number of indice rules. Now we are going to look at questions that involve a combination of these rules. It's important to remember the order of operations when we're solving these questions.

Rule Recap
  • The product rule: $a^m\times a^n=a^{m+n}$am×an=am+n
  • The quotient rule: $a^m\div a^n=a^{m-n}$am÷​an=amn
  • The zero exponent rule:$a^0=1$a0=1
  • The power of a power rule: $\left(a^m\right)^n=a^{mn}$(am)n=amn
  • The negative exponent rule: $a^{-m}=\frac{1}{a^m}$am=1am

A question may have any combination of indice rules. We just need to simplify it step by step, making sure we follow the order of operations.

Let's look through some examples now!

Examples

Question 1

Simplify: $p^7\div p^3\times p^5$p7÷​p3×p5

Think: We need to apply the exponent division and exponent multiplication laws.

Do:

$p^7\div p^3\times p^5$p7÷​p3×p5 $=$= $p^{7-3+5}$p73+5
  $=$= $p^9$p9

 


Question 2

Simplify: $\frac{\left(u^{x+3}\right)^3}{u^{x+1}}$(ux+3)3ux+1

Think: Just like in Question 2, we need to simplify the numerator using the power of a power rule, then apply the quotient rule.

Do:

$\frac{\left(u^{x+3}\right)^3}{u^{x+1}}$(ux+3)3ux+1 $=$= $\frac{u^{3x+9}}{u^{x+1}}$u3x+9ux+1 Firstly, we'll simplify the numerator using the "power of a power" rule
  $=$= $u^{3x+9-\left(x+1\right)}$u3x+9(x+1) Then, using the quotient rule, we can subtract the power
  $=$= $u^{3x+9-x-1}$u3x+9x1 Expand the brackets, then simplify by collecting the like terms
  $=$= $u^{2x+8}$u2x+8  

 

Question 3

Express $\left(4^p\right)^4$(4p)4 with a prime number base in exponential form.

Think: We could express $4$4 as $2^2$22 which has a prime number base.

Do:

$\left(4^p\right)^4$(4p)4 $=$= $4^{4p}$44p
  $=$= $\left(2^2\right)^{4p}$(22)4p
  $=$= $2^{8p}$28p

 

Question 4

Simplify $20m^6\div5m^{13}\times9m^2$20m6÷​5m13×9m2, expressing your answer in positive exponential form.

Think: Let's express this as a fraction so the powers are on the numerator and the denominator for easy comparison.

Do:

$\frac{20m^6}{5m^{13}}\times9m^2$20m65m13×9m2 $=$= $\frac{4}{m^7}\times9m^2$4m7×9m2
  $=$= $\frac{36m^2}{m^7}$36m2m7
  $=$= $\frac{36}{m^5}$36m5
Question 5

Simplify $\frac{\left(x^2\right)^6}{\left(x^2\right)^2}$(x2)6(x2)2

Question 6

Simplify $\left(u^9\times u^5\div u^{19}\right)^2$(u9×u5÷​u19)2, expressing your answer in positive exponential form.

 

Outcomes

11U.B.1.3

Simplify algebraic expressions containing integer and rational, and evaluate numeric expressions containing integer and rational exponents and rational bases exponents

What is Mathspace

About Mathspace