# The Midpoint of an Interval

## Interactive practice questions

Which of the following formulae correctly describes the coordinates of the midpoint of the points $\left(x_1,y_1\right)$(x1,y1) and $\left(x_2,y_2\right)$(x2,y2)?

$\left(x_2+x_1,y_2+y_1\right)$(x2+x1,y2+y1)

A

$\left(\frac{x_2+x_1}{2},\frac{y_1-y_2}{2}\right)$(x2+x12,y1y22)

B

$\left(\frac{x_1-x_2}{2},\frac{y_1-y_2}{2}\right)$(x1x22,y1y22)

C

$\left(\frac{x_2+x_1}{2},\frac{y_2+y_1}{2}\right)$(x2+x12,y2+y12)

D

$\left(x_2+x_1,y_2+y_1\right)$(x2+x1,y2+y1)

A

$\left(\frac{x_2+x_1}{2},\frac{y_1-y_2}{2}\right)$(x2+x12,y1y22)

B

$\left(\frac{x_1-x_2}{2},\frac{y_1-y_2}{2}\right)$(x1x22,y1y22)

C

$\left(\frac{x_2+x_1}{2},\frac{y_2+y_1}{2}\right)$(x2+x12,y2+y12)

D
Easy
Less than a minute
$M$M is the midpoint of Point $A$A $\left(5,2\right)$(5,2) and Point $B$B $\left(1,6\right)$(1,6).
Consider the midpoint of the interval joining $A$A$\left(5,7\right)$(5,7) and $B$B$\left(2,-6\right)$(2,6).
$M$M is the midpoint of Point $A$A $\left(4,-3\right)$(4,3) and Point $B$B $\left(-4,5\right)$(4,5).