UK Secondary (7-11)
topic badge
Transformations and Similarity
Lesson

In Changing Shapes, we looked at how congruent shapes may be transformed in one or more ways on a number plane. We can also transform similar shapes. These similar shapes will be enlarged by a scale factor (ie. enlarged or reduced by a certain ratio) in addition to the transformation. The video attached to the examples below explains this process.


Examples

Question 1

Consider the figures shown.

Loading Graph...

  1. Are the two triangles congruent, similar or neither?

    Congruent

    A

    Similar

    B

    Neither

    C

    Congruent

    A

    Similar

    B

    Neither

    C
  2. What is the transformation from triangle $ABC$ABC to triangle $A'B'C'$ABC?

    Enlargement

    A

    Reflection

    B

    Rotation

    C

    Translation

    D

    Enlargement

    A

    Reflection

    B

    Rotation

    C

    Translation

    D
  3. What is the scale factor of the enlargement from triangle $ABC$ABC to triangle $A'B'C'$ABC?

Question 2

Consider the quadrilateral with vertices at $A$A$\left(-3,-3\right)$(3,3), $B$B$\left(-3,3\right)$(3,3), $C$C$\left(3,3\right)$(3,3) and $D$D$\left(3,-3\right)$(3,3), and the quadrilateral with vertices at $A'$A$\left(-9,-9\right)$(9,9), $B'$B$\left(-9,9\right)$(9,9), $C'$C$\left(9,9\right)$(9,9) and $D'$D$\left(9,-9\right)$(9,9).

  1. Are the two rectangles similar, congruent or neither?

    congruent

    A

    similar

    B

    neither

    C

    congruent

    A

    similar

    B

    neither

    C
  2. What is the transformation from rectangle $ABCD$ABCD to rectangle $A'B'C'D'$ABCD?

    enlargement

    A

    reflection

    B

    rotation

    C

    translation

    D

    enlargement

    A

    reflection

    B

    rotation

    C

    translation

    D
  3. What is the scale factor of the enlargement of rectangle $ABCD$ABCD to rectangle $A'B'C'D'$ABCD?

Question 3

The quadrilateral with vertices at $\left(9,9\right)$(9,9), $\left(0,9\right)$(0,9), $\left(0,0\right)$(0,0) and $\left(9,0\right)$(9,0) is rotated 90 degrees clockwise around the origin and enlarged by a factor of 2 with the origin as the centre of enlargement.

What are the new coordinates of the vertices of the quadrilateral?

  1. Write all four coordinates on the same line, separated by commas.

 

What is Mathspace

About Mathspace