Book a Demo
Select a topic
UK Primary (36)
Change textbook
N
u
m
b
e
r
(
o
r
d
e
r
a
n
d
p
l
a
c
e
v
a
l
u
e
)
N
u
m
b
e
r
(
a
d
d
/
s
u
b
)
N
u
m
b
e
r
(
m
u
l
t
/
d
i
v
)
M
u
l
t
i
p
l
i
c
a
t
i
o
n
T
a
b
l
e
s
N
u
m
b
e
r
(
p
r
o
p
o
r
t
i
o
n
)
N
u
m
b
e
r
(
4
o
p
s
a
n
d
m
i
x
e
d
)
N
u
m
b
e
r
T
h
e
o
r
y
D
i
r
e
c
t
e
d
N
u
m
b
e
r
s
F
r
a
c
t
i
o
n
s
F
r
a
c
t
i
o
n
b
a
r
s
(
2
,
3
,
4
,
5
)
(
Y
r
3
)
N
u
m
b
e
r
l
i
n
e
s
(
2
,
3
,
4
,
5
)
A
r
e
a
m
o
d
e
l
s
(
2
,
3
,
4
,
5
)
F
r
a
c
t
i
o
n
s
w
i
t
h
o
b
j
e
c
t
s
(
2
,
3
,
4
,
5
)
C
o
m
p
a
r
i
s
o
n
s
u
s
i
n
g
m
o
d
e
l
s
(
2
,
3
,
4
,
5
)
C
o
m
p
a
r
i
s
o
n
s
u
s
i
n
g
n
u
m
b
e
r
l
i
n
e
s
(
2
,
3
,
4
,
5
)
O
r
d
e
r
i
n
g
a
n
d
c
o
u
n
t
i
n
g
w
i
t
h
f
r
a
c
t
i
o
n
s
(
2
,
3
,
4
,
5
)
F
r
a
c
t
i
o
n
b
a
r
s
N
u
m
b
e
r
l
i
n
e
s
A
r
e
a
m
o
d
e
l
s
F
r
a
c
t
i
o
n
s
w
i
t
h
o
b
j
e
c
t
s
C
o
m
p
a
r
i
s
o
n
s
u
s
i
n
g
m
o
d
e
l
s
I
C
o
m
p
a
r
i
s
o
n
s
u
s
i
n
g
n
u
m
b
e
r
l
i
n
e
s
E
q
u
i
v
a
l
e
n
t
f
r
a
c
t
i
o
n
s
(
2
,
3
,
4
,
6
,
8
)
C
o
m
p
a
r
i
s
o
n
s
u
s
i
n
g
e
q
u
i
v
a
l
e
n
t
f
r
a
c
t
i
o
n
s
(
2
,
3
,
4
,
5
,
6
,
8
,
1
0
,
1
2
,
1
0
0
)
O
r
d
e
r
i
n
g
a
n
d
c
o
u
n
t
i
n
g
w
i
t
h
f
r
a
c
t
i
o
n
s
M
i
x
e
d
n
u
m
b
e
r
s
(
n
a
m
e
,
i
d
e
n
t
i
f
y
a
n
d
c
o
m
p
a
r
e
)
A
d
d
i
n
g
t
e
n
t
h
s
a
n
d
h
u
n
d
r
e
d
t
h
s
A
d
d
i
n
g
t
e
n
t
h
s
a
n
d
h
u
n
d
r
e
d
t
h
s
(
f
r
a
c
t
i
o
n
s
a
n
d
d
e
c
i
m
a
l
s
)
S
h
a
d
e
d
F
r
a
c
t
i
o
n
s
a
n
d
N
u
m
b
e
r
L
i
n
e
s
(
U
n
i
t
F
r
a
c
t
i
o
n
s
)
F
r
a
c
t
i
o
n
s
o
n
a
n
u
m
b
e
r
l
i
n
e
C
o
m
p
a
r
i
n
g
f
r
a
c
t
i
o
n
s
I
F
r
a
c
t
i
o
n
s
a
n
d
t
h
e
b
e
n
c
h
m
a
r
k
s
0
,
1
/
2
a
n
d
1
I
d
e
n
t
i
f
y
l
o
w
e
s
t
c
o
m
m
o
n
d
e
n
o
m
i
n
a
t
o
r
s
E
q
u
i
v
a
l
e
n
t
F
r
a
c
t
i
o
n
s
U
s
i
n
g
b
e
n
c
h
m
a
r
k
s
E
q
u
i
v
a
l
e
n
t
F
r
a
c
t
i
o
n
s
I
I
C
o
m
p
a
r
e
a
n
d
O
r
d
e
r
F
r
a
c
t
i
o
n
s
O
r
d
e
r
i
n
g
U
n
i
t
F
r
a
c
t
i
o
n
s
A
d
d
i
n
g
a
n
d
s
u
b
t
r
a
c
t
i
n
g
F
r
a
c
t
i
o
n
s
O
r
d
e
r
i
n
g
F
r
a
c
t
i
o
n
s
I
E
g
y
p
t
i
a
n
F
r
a
c
t
i
o
n
s
(
I
n
v
e
s
t
i
g
a
t
i
o
n
)
T
e
n
t
h
s
a
n
d
H
u
n
d
r
e
d
t
h
s
(
e
q
u
i
v
a
l
e
n
t
f
r
a
c
t
i
o
n
s
)
T
e
n
t
h
s
,
1
0
0
t
h
s
a
n
d
D
e
c
i
m
a
l
s
A
d
d
/
s
u
b
u
s
i
n
g
n
u
m
b
e
r
l
i
n
e
s
(
i
n
c
l
m
i
x
e
d
n
u
m
b
e
r
s
)
(
2
,
3
,
4
,
5
,
6
,
8
,
1
0
,
1
2
)
A
d
d
/
s
u
b
u
s
i
n
g
m
o
d
e
l
s
(
i
n
c
l
m
i
x
e
d
n
u
m
b
e
r
s
)
(
2
,
3
,
4
,
5
,
6
,
8
,
1
0
,
1
2
)
N
u
m
b
e
r
s
e
n
t
e
n
c
e
s
w
i
t
h
f
r
a
c
t
i
o
n
s
I
A
d
d
/
s
u
b
u
s
i
n
g
s
y
m
b
o
l
s
(
i
n
c
l
m
i
x
e
d
n
u
m
b
e
r
s
)
(
2
,
3
,
4
,
5
,
6
,
8
,
1
0
,
1
2
)
A
d
d
/
s
u
b
o
f
u
n
i
t
f
r
a
c
t
i
o
n
s
A
d
d
i
n
g
a
n
d
S
u
b
t
r
a
c
t
i
n
g
M
i
x
e
d
N
u
m
b
e
r
s
A
d
d
i
t
i
o
n
a
n
d
S
u
b
t
r
a
c
t
i
o
n
o
f
L
i
k
e
F
r
a
c
t
i
o
n
s
F
r
a
c
t
i
o
n
F
l
o
w
e
r
s
(
I
n
v
e
s
t
i
g
a
t
i
o
n
)
C
h
e
c
k
i
n
g
R
e
a
s
o
n
a
b
l
e
n
e
s
s
o
f
F
r
a
c
t
i
o
n
S
u
m
s
I
M
u
l
t
i
p
l
e
s
o
f
u
n
i
t
f
r
a
c
t
i
o
n
s
u
s
i
n
g
n
u
m
b
e
r
l
i
n
e
s
a
n
d
s
y
m
b
o
l
s
(
A
x
1
/
b
)
(
2
,
3
,
4
,
5
,
6
,
8
,
1
0
,
1
2
)
M
u
l
t
i
p
l
i
c
a
t
i
o
n
o
f
f
r
a
c
t
i
o
n
s
u
s
i
n
g
n
u
m
b
e
r
l
i
n
e
s
a
n
d
s
y
m
b
o
l
s
(
C
x
a
/
b
)
(
2
,
3
,
4
,
5
,
6
,
8
,
1
0
,
1
2
)
C
o
m
p
a
r
e
a
d
d
/
s
u
b
s
t
a
t
e
m
e
n
t
s
w
i
t
h
f
r
a
c
t
i
o
n
s
I
A
r
e
a
s
a
s
F
r
a
c
t
i
o
n
s
S
h
a
d
e
d
F
i
g
u
r
e
s
a
n
d
N
u
m
b
e
r
L
i
n
e
s
C
o
m
p
a
r
i
s
o
n
s
u
s
i
n
g
m
o
d
e
l
s
I
I
M
u
l
t
i
p
l
i
c
a
t
i
o
n
o
f
f
r
a
c
t
i
o
n
s
(
2
,
3
,
4
,
6
,
8
,
1
0
,
1
2
,
1
0
0
)
M
u
l
t
i
p
l
y
i
n
g
F
r
a
c
t
i
o
n
s
C
o
m
p
a
r
i
n
g
f
r
a
c
t
i
o
n
s
I
I
W
r
i
t
e
t
h
e
r
e
c
i
p
r
o
c
a
l
o
f
a
f
r
a
c
t
i
o
n
F
r
a
c
t
i
o
n
s
o
f
Q
u
a
n
t
i
t
i
e
s
(
u
n
i
t
f
r
a
c
t
i
o
n
s
)
D
i
v
i
d
i
n
g
u
n
i
t
f
r
a
c
t
i
o
n
s
b
y
w
h
o
l
e
n
u
m
b
e
r
s
F
r
a
c
t
i
o
n
s
o
f
Q
u
a
n
t
i
t
i
e
s
(
s
i
m
p
l
e
n
o
n

u
n
i
t
)
E
q
u
i
v
a
l
e
n
t
F
r
a
c
t
i
o
n
s
I
O
r
d
e
r
i
n
g
f
r
a
c
t
i
o
n
s
w
i
t
h
b
e
n
c
h
m
a
r
k
s
o
n
l
y
O
r
d
e
r
i
n
g
F
r
a
c
t
i
o
n
s
I
I
N
u
m
b
e
r
s
e
n
t
e
n
c
e
s
w
i
t
h
f
r
a
c
t
i
o
n
s
I
I
C
h
e
c
k
i
n
g
R
e
a
s
o
n
a
b
l
e
n
e
s
s
o
f
F
r
a
c
t
i
o
n
S
u
m
s
I
I
A
d
d
i
t
i
o
n
a
n
d
S
u
b
t
r
a
c
t
i
o
n
s
u
s
i
n
g
n
u
m
b
e
r
l
i
n
e
s
(
2
,
3
,
4
,
5
,
6
,
8
,
1
0
,
1
2
)
A
d
d
i
t
i
o
n
a
n
d
S
u
b
t
r
a
c
t
i
o
n
u
s
i
n
g
m
o
d
e
l
s
(
2
,
3
,
4
,
5
,
6
,
8
,
1
0
,
1
2
)
A
d
d
i
n
g
a
n
d
S
u
b
t
r
a
c
t
i
n
g
f
r
a
c
t
i
o
n
s
(
e
a
s
i
l
y
r
e
l
a
t
e
d
d
e
n
o
m
i
n
a
t
o
r
s
)
C
o
m
p
a
r
e
a
d
d
/
s
u
b
s
t
a
t
e
m
e
n
t
s
w
i
t
h
f
r
a
c
t
i
o
n
s
I
I
T
y
p
e
s
o
f
F
r
a
c
t
i
o
n
s
S
i
m
p
l
i
f
y
i
n
g
F
r
a
c
t
i
o
n
s
M
i
x
e
d
q
u
e
s
t
i
o
n
s
o
n
f
r
a
c
t
i
o
n
s
(
c
o
m
p
a
r
i
n
g
,
e
q
u
i
v
a
l
e
n
c
e
,
s
i
m
p
l
i
f
y
i
n
g
a
n
d
o
r
d
e
r
i
n
g
)
M
i
x
e
d
Q
u
e
s
t
i
o
n
s
o
n
F
r
a
c
t
i
o
n
s
D
e
c
i
m
a
l
s
P
e
r
c
e
n
t
a
g
e
s
R
a
t
i
o
s
T
i
m
e
M
e
a
s
u
r
e
m
e
n
t
G
e
o
m
e
t
r
y
P
o
s
i
t
i
o
n
a
n
d
T
r
a
n
s
f
o
r
m
a
t
i
o
n
N
u
m
b
e
r
P
a
t
t
e
r
n
s
S
t
a
t
i
s
t
i
c
s
M
e
n
t
a
l
C
o
m
p
u
t
a
t
i
o
n
C
o
d
i
n
g
a
n
d
A
l
g
o
r
i
t
h
m
s
Log in
Sign up
Book a Demo
Select a subtopic to start exploring