New Zealand
Level 8 - NCEA Level 3

# Domain and range of sine and cosine curves

## Interactive practice questions

a

The domain of both the sine and cosine functions is:

$[$[$-1,1$1,1$]$]

A

$[$[$0,\infty$0,$)$)

B

$\left(-\infty,\infty\right)$(,)

C

$[$[$0,2\pi$0,2π$]$]

D

$[$[$-1,1$1,1$]$]

A

$[$[$0,\infty$0,$)$)

B

$\left(-\infty,\infty\right)$(,)

C

$[$[$0,2\pi$0,2π$]$]

D
b

The range of both the sine and cosine functions is:

$[$[$-2\pi,2\pi$2π,2π$]$]

A

$[$[$-1,1$1,1$]$]

B

$\left(-\infty,\infty\right)$(,)

C

$[$[$0,2\pi$0,2π$]$]

D

$[$[$-2\pi,2\pi$2π,2π$]$]

A

$[$[$-1,1$1,1$]$]

B

$\left(-\infty,\infty\right)$(,)

C

$[$[$0,2\pi$0,2π$]$]

D
Easy
Less than a minute

Consider the function $y=-3\sin x$y=3sinx, where $x$x is in radians.

Consider the function $y=-2\cos x$y=2cosx, where $x$x is in radians.

Consider the function $y=5\sin2x$y=5sin2x, where $x$x is in radians.

### Outcomes

#### M8-2

Display and interpret the graphs of functions with the graphs of their inverse and/or reciprocal functions