 New Zealand
Level 8 - NCEA Level 3

Intro to sin(x), cos(x) and tan(x)

Interactive practice questions

Consider the equation $y=\sin x$y=sinx.

a

Using the fact that $\sin\frac{\pi}{6}=\frac{1}{2}$sinπ6=12, what is the value of $\sin\frac{5\pi}{6}$sin5π6?

b

Using the fact that $\sin\frac{\pi}{6}=\frac{1}{2}$sinπ6=12, what is the value of $\sin\frac{7\pi}{6}$sin7π6?

c

Using the fact that $\sin\frac{\pi}{6}=\frac{1}{2}$sinπ6=12, what is the value of $\sin\frac{11\pi}{6}$sin11π6?

d

 $x$x $\sin x$sinx $0$0 $\frac{\pi}{6}$π6​ $\frac{\pi}{2}$π2​ $\frac{5\pi}{6}$5π6​ $\pi$π $\frac{7\pi}{6}$7π6​ $\frac{3\pi}{2}$3π2​ $\frac{11\pi}{6}$11π6​ $2\pi$2π $\editable{}$ $\editable{}$ $\editable{}$ $\editable{}$ $\editable{}$ $\editable{}$ $\editable{}$ $\editable{}$ $\editable{}$
e

Draw the graph of $y=\sin x$y=sinx.

Easy
Approx 6 minutes

Consider the equation $y=\cos x$y=cosx.

Consider the equation $y=\tan x$y=tanx.

Consider the equation $y=\sin x$y=sinx.

Outcomes

M8-2

Display and interpret the graphs of functions with the graphs of their inverse and/or reciprocal functions