Just like with adding and subtracting different types of rational numbers, it is helpful to convert numbers to the same form when multiplying or dividing them.
Multiply 4.83 by 5.7
\begin{array}{c} & & & &4&8&3 \\ &\cdot & & & &5&7 \\ \hline & & &3&3&8&1 \\ &+ &2&4&1&5&0 \\ \hline & &2&7&5&3&1 \end{array}
In this case, the original numbers are 4.83, which has two decimal places, and 5.7, which has one decimal place. So their product will have 2+1=3 decimal places.
Divide 5.6 by 0.7
\displaystyle 5.6 \div 0.7 | \displaystyle = | \displaystyle (5.6 \cdot 10) \div (0.7 \cdot 10) | Convert divisor to a whole number by multiplying by both values by 10 |
\displaystyle = | \displaystyle 56 \div 7 | Divide 56 by 7 using long division. | |
\displaystyle = | \displaystyle 8 | Evaluate |
Multiplying fractions: multiply the numerators, multiply the denominators, and simplify.
Multiply \dfrac{2}{3} by \dfrac{5}{4}
\displaystyle \dfrac{2}{3} \cdot \dfrac{5}{4} | \displaystyle = | \displaystyle \dfrac{2 \cdot 5}{3 \cdot 4} | Multiply the numerators |
\displaystyle = | \displaystyle \dfrac{10}{3 \cdot 4} | Multiply the denominators | |
\displaystyle = | \displaystyle \dfrac{10}{12} | Simplify the fraction | |
\displaystyle = | \displaystyle \dfrac{5}{6} |
Dividing fractions: take the reciprocal of the divisor and multiply. Then, follow the rules for multiplication.
Divide \dfrac{4}{5} by \dfrac{8}{3}
\displaystyle \dfrac{4}{5} \div \dfrac{8}{3} | \displaystyle = | \displaystyle \dfrac{4}{5} \cdot \dfrac{3}{8} | Take the reciprocal of the divisor \dfrac{8}{3} and multiply |
\displaystyle \dfrac{4 \cdot 3}{5 \cdot 8} | \displaystyle = | \displaystyle \dfrac{12}{40} | Multiply the numerators and denominators |
\displaystyle = | \displaystyle \dfrac{3}{10} | Simplify the fraction |
Mixed numbers: change it into an improper fraction and proceed to use the rules for multiplying or dividing fractions.
Divide 2\dfrac{1}{2} by 1\dfrac{3}{4}
\displaystyle 2\dfrac{1}{2} \div 1\dfrac{3}{4} | \displaystyle = | \displaystyle \dfrac{5}{2} \div \dfrac{7}{4} | Convert mixed numbers to improper fractions |
\displaystyle \dfrac{5}{2} \div \dfrac{7}{4} | \displaystyle = | \displaystyle \dfrac{5}{2} \cdot \dfrac{4}{7} | Take the reciprocal of the divisor \dfrac{7}{4} and multiply |
\displaystyle \dfrac{5 \cdot 4}{2 \cdot 7} | \displaystyle = | \displaystyle \dfrac{20}{14} | Multiply the numerators and denominators |
\displaystyle = | \displaystyle \dfrac{10}{7} | Simplify the fraction |
When we have negative rational numbers, the same rules of negative and positive integers apply:
Multiply \dfrac{2}{3} by \dfrac{3}{4}
\displaystyle \dfrac{2}{3} \cdot \dfrac{3}{4} | \displaystyle = | \displaystyle \dfrac{2 \cdot 3}{3 \cdot 4} | Multiply the numerators and denominators |
\displaystyle = | \displaystyle \dfrac{6}{12} | Simplify the fraction | |
\displaystyle = | \displaystyle \dfrac{1}{2} |
Multiply -2.5 by -4
\displaystyle -2.5 \cdot -4 | \displaystyle = | \displaystyle -25 \cdot -4 | Multiply the numbers as if there were no decimal places |
\displaystyle = | \displaystyle 100 | The product will have 1+0=1 decimal place | |
\displaystyle = | \displaystyle 10.0 | Rewrite 100 with one decimal place added in | |
\displaystyle = | \displaystyle 10 |
Divide 3 \dfrac{1}{2} by -2 \dfrac{1}{4}
\displaystyle 3 \dfrac{1}{2} \div -2 \dfrac{1}{4} | \displaystyle = | \displaystyle \dfrac{7}{2} \div \dfrac{-9}{4} | Convert to improper fractions |
\displaystyle = | \displaystyle \dfrac{7}{2} \cdot \dfrac{4}{-9} | Take the reciprocal of the divisor | |
\displaystyle = | \displaystyle \dfrac{7 \cdot 4}{2 \cdot -9} | Multiply the numerators and denominators | |
\displaystyle = | \displaystyle \dfrac{28}{-18} | Simplify the fraction | |
\displaystyle = | \displaystyle -\dfrac{14}{9} |
Consider the expression-10\cdot \left(-2\dfrac{1}{4}\right).
Estimate the solution.
Evaulate, giving your answer as a mixed number.
Consider the expression - 9.11 \cdot \dfrac{5}{9}.
Evaluate, writing your answer as decimals to the thousandths.
Justify your solution.
Decimals
Fractions
Multiply the numerators, multiply the denominators, and simplify.
To divide, take the reciprocal of the divisor and rewrite as multiplication.
Rewrite mixed numbers as improper fractions first.
Signs with multiplication and division
If signs are opposite the answer will be negative.
If signs are the same the answer will be positive.