The same operations that apply to numeric radicals can also be applied to algebraic radical expressions.
We can add or subtract like radicals (radicals with the same index and radicand) by adding the coefficients and keeping the radicand the same.
a\sqrt[n]{x}+b\sqrt[n]{x}=\left(a+b\right)\sqrt[n]{x}
\text{or}
a\sqrt[n]{x}-b\sqrt[n]{x}=\left(a-b\right)\sqrt[n]{x}
If there are no like radicals, check to see if any of the radicals can be simplified first.
Assuming y>0, simplify 10\sqrt{2y}+14\sqrt{2y}
Simplify \sqrt[3]{125y}+\sqrt[3]{8y}
Simplify \sqrt[3]{512v}-5\sqrt[3]{v}
Simplify 6\sqrt[5]{7a}+7\sqrt[5]{5a}-3\sqrt[5]{7a}+8\sqrt[5]{5a}
When adding and subtracting algebraic radicals, they must have the same radicand before we can add or subtract like radicals.
a\sqrt[n]{x}+b\sqrt[n]{x}=\left(a+b\right)\sqrt[n]{x}
\text{or}
a\sqrt[n]{x}-b\sqrt[n]{x}=\left(a-b\right)\sqrt[n]{x}