Previously, we have seen that we can rewrite square roots and cube roots with rational exponents. Since \left(a^\frac{1}{2}\right)^2 =a and \left(\sqrt{a}\right)^2=a, that means a^\frac{1}{2}=\sqrt{a}. A similar argument can be used for cube roots.
Consider the following statements:\begin{aligned} 81^\frac{1}{4} \cdot 81^\frac{1}{4} \cdot 81^\frac{1}{4} \cdot 81^\frac{1}{4} = \left(81^{\text{⬚}}\right)^4&=81^{\text{⬚}}=3^{\text{⬚}}\\ \left(\sqrt[4]{81}\right)^4&=81=\left(81^{\text{⬚}}\right)^4\\ \left(\sqrt[4]{81}\right)^3\cdot 81^\frac{1}{4}=81^{\text{⬚}} \cdot 81^\frac{1}{4}&=81 \end{aligned}
Using the properties of exponents, we can express a^\frac{1}{n}, which represents one of n equal factors whose product equals a, multiplied by itself m times, using rational exponents as:
where, m and n are integers, and n \neq 0.
In general:
We can use these rules for rewriting radicals along with the properties of exponents to simplify expressions involving radicals and rational exponents. Recall that the properties of exponents can be applied to integer exponents and rational exponents.
\text{Product of powers} | a^{m} \cdot a^{n} = a^{m+n} |
\text{Quotient of powers} | \dfrac{{a}^{m}}{{a}^{n}}=a^{m-n} |
\text{Power of a power} | \left(a^{m}\right)^{n} = a^{mn} |
\text{Power of a product} | \left(a b\right)^{m} = a^{m} \cdot b^{m} |
\text{Power of a quotient} | \left(\dfrac{a} {b}\right)^{m} =\dfrac {a^{m}} {b^{m}} |
\text{Identity exponent} | a^1=a |
\text{Zero exponent} | a^0=1 |
\text{Negative exponent} | a^{- {m}}=\dfrac{1}{a^{m}} |
Use the properties of exponents to define a rational exponent that would make the statement true: \left(\sqrt[3]{x^7}\right)^3=\left(x^{\frac{⬚}{⬚}}\right)^3=x^7
Write each expression in an equivalent form using rational exponents. Assume all variables are positive.
\sqrt[5]{x^7}
\left(\sqrt[4]{x^3y^5}\right)^{12}
Write the following expressions in simplified radical form.
\left(bc\right)^{\frac{1}{5}}
\left(\dfrac{81x}{625y^8}\right)^{\frac{1}{4}} assume all variables are positive.
\left(-27a^{15}b^{27}\right)^\frac{1}{3}
(-12x^5y^3)^{-\frac{1}{2}} assume all variables are positive.
We can write radicals using rational exponents, for integer values of m and n, where n\neq 0:
The properties of integer exponents can also be applied to rational exponents:
\text{Product of powers} | a^\frac{m}{n} \cdot a^\frac{p}{n} = a^\frac{m+p}{n} |
\text{Quotient of powers} | \dfrac{{a}^\frac{m}{n}}{{a}^\frac{p}{n}}=a^\frac{m-p}{n} |
\text{Power of a power} | (a^\frac{m}{n})^\frac{p}{q} = a^\frac{mp}{nq} |
\text{Power of a product} | (a b)^\frac{m}{n} = a^\frac{m}{n} \cdot b^\frac{m}{n} |
\text{Power of a quotient} | \left(\dfrac{a}{b}\right)^{\frac{m}{n}}=\dfrac{a^{\frac{m}{n}}}{b^{\frac{m}{n}}} |
\text{Identity exponent} | a^1=a |
\text{Zero exponent} | a^0=1 |
\text{Negative exponent} | a^{-\frac{m}{n}}=\dfrac{1}{a^\frac{m}{n}} |