Consider the function $f\left(x\right)=9x-5$f(x)=9x−5. Describe how the graph of the function $g\left(x\right)=f\left(x\right)+6$g(x)=f(x)+6 differs from the graph of $f\left(x\right)$f(x).
$f\left(x\right)$f(x) is vertically stretched by a factor of $6$6.
$f\left(x\right)$f(x) is translated up by $6$6 units.
$f\left(x\right)$f(x) is vertically compressed by a factor of $\frac{1}{6}$16.
$f\left(x\right)$f(x) is translated down by $6$6 units.
Consider the function $f\left(x\right)=6x-9$f(x)=6x−9. Describe how the graph of the function $g\left(x\right)=f\left(x\right)-2$g(x)=f(x)−2 differs from $f\left(x\right)$f(x).
Consider the function $f\left(x\right)=7x+7$f(x)=7x+7. Describe how the graph of the function $g\left(x\right)=6f\left(x\right)$g(x)=6f(x) differs from $f\left(x\right)$f(x).
Consider the function $f\left(x\right)=3x+10$f(x)=3x+10. Describe how the graph of the function $g\left(x\right)=\frac{1}{6}f\left(x\right)$g(x)=16f(x) differs from $f\left(x\right)$f(x).