topic badge
AustraliaVIC
VCE 11 Methods 2023

8.10 Trigonometric identities

Lesson

Pythagorean identity

A very useful expression can be found by applying Pythagoras' theorem to the right-angled triangle formed in a unit circle. Consider the picture below.

 

Applying Pythagoras' theorem:

 

$a^2+b^2$a2+b2 $=$= $c^2$c2
$\left(\cos\theta\right)^2+\left(\sin\theta\right)^2$(cosθ)2+(sinθ)2 $=$= $1$1

Which can also be written as:

$\cos^2\theta+\sin^2\theta$cos2θ+sin2θ $=$= $1$1

This relationship holds for any angle $\theta$θ.

 

Pythagorean identity
$\cos^2\theta+\sin^2\theta$cos2θ+sin2θ $=$= $1$1

Worked examples

Example 1

Evaluate the expression $5\cos^2\left(80^\circ\right)+5\sin^2\left(80^\circ\right)$5cos2(80°)+5sin2(80°).

Although neither $\cos\left(80^\circ\right)$cos(80°) or $\sin\left(80^\circ\right)$sin(80°) can be written in exact form using decimals or surds, we can simplify the expression by recognising the Pythagorean identity.

$5\cos^2\left(80^\circ\right)+5\sin^2\left(80^\circ\right)$5cos2(80°)+5sin2(80°) $=$= $5\left(\cos^2\left(80^\circ\right)+\sin^2\left(80^\circ\right)\right)$5(cos2(80°)+sin2(80°))
  $=$= $5\times1$5×1
  $=$= $5$5
Example 2

Find the exact value of $\cos\theta$cosθ and $\tan\theta$tanθ given that $\sin\theta=\frac{12}{13}$sinθ=1213 and $\theta$θ is in the second quadrant.

Think: We can find $\cos\theta$cosθ using the Pythagorean identity and the additional information about the quadrant will tell us if the ratio is positive or negative. One we know both $\sin\theta$sinθ and $\cos\theta$cosθ we can find $\tan\theta$tanθ using the definition $\tan\theta=\frac{\sin\theta}{\cos\theta}$tanθ=sinθcosθ

Do: Write out the Pythagorean identity and substitute the known value in.

$\cos^2\theta+\sin^2\theta$cos2θ+sin2θ $=$= $1$1
$\cos^2\theta+\left(\frac{12}{13}\right)^2$cos2θ+(1213)2 $=$= $1$1
$\cos^2\theta+\frac{144}{169}$cos2θ+144169 $=$= $1$1
$\cos^2\theta$cos2θ $=$= $1-\frac{144}{169}$1144169
$\cos\theta$cosθ $=$= $\pm\sqrt{\frac{25}{169}}$±25169
  $=$= $\pm\frac{5}{13}$±513

We have been given the additional information that $\theta$θ is in the second quadrant. In the second quadrant sine is positive but cosine and tangent will be negative. Hence, $\cos\theta=\frac{-5}{13}$cosθ=513.

Using $\tan\theta=\frac{\sin\theta}{\cos\theta}$tanθ=sinθcosθ, we find:

$\tan\theta$tanθ $=$= $\frac{\sin\theta}{\cos\theta}$sinθcosθ
  $=$= $\frac{12}{13}\div\frac{-5}{13}$1213÷​513
  $=$= $\frac{-12}{5}$125
 

Practice questions

Question 1

Answer the following questions given that $\cos y=-\frac{5}{13}$cosy=513, where $180^\circ180°<y<360°.

  1. In which quadrant does angle $y$y lie?

    Quadrant $I$I

    A

    Quadrant $II$II

    B

    Quadrant $III$III

    C

    Quadrant $IV$IV

    D
  2. Use a Pythagorean identity to find the value of $\tan y$tany.

Question 2

Simplify $\left(\cos\theta-1\right)\left(\cos\theta+1\right)$(cosθ1)(cosθ+1).

Angle sum identities

The Angle Sum and Difference identities allow for the expansion of expressions like $\sin\left(A+B\right)$sin(A+B). One way to establish these identities involves using the cosine rule and the distance formula together with an arbitrary triangle with vertices at the centre and circumference of the unit circle.

Two different expressions can be written for the length of the green line $PQ$PQ. First, using the cosine rule.

The arms of the triangle have unit length because they are radii of the unit circle. Therefore:

$c^2$c2 $=$= $a^2+b^2-2ab\cos C$a2+b22abcosC
$PQ^2$PQ2 $=$= $1^2+1^2-2\times1\times1\times\cos\left(A-B\right)$12+122×1×1×cos(AB)
  $=$= $2-2\cos\left(A-B\right)$22cos(AB) .......... [1]

Next, write the distance $PQ$PQ using the coordinates of the points and the distance formula. This gives: 

$d^2$d2 $=$= $\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2$(x2x1)2+(y2y1)2
$PQ^2$PQ2 $=$= $\left(\cos A-\cos B\right)^2+\left(\sin A-\sin B\right)^2$(cosAcosB)2+(sinAsinB)2
  $=$= $\cos^2A-2\cos A\cos B+\cos^2B+\sin^2A-2\sin A\sin B+\sin^2B$cos2A2cosAcosB+cos2B+sin2A2sinAsinB+sin2B
  $=$= $\cos^2A+\sin^2A+\cos^2B+\sin^2B-2\cos A\cos B-2\sin A\sin B$cos2A+sin2A+cos2B+sin2B2cosAcosB2sinAsinB
  $=$= $2-2\left(\cos A\cos B+\sin A\sin B\right)$22(cosAcosB+sinAsinB) .......... [2]

Equating the two expressions, [1] and [2], gives:

$2-2\cos\left(A-B\right)$22cos(AB) $=$= $2-2\left(\cos A\cos B+\sin A\sin B\right)$22(cosAcosB+sinAsinB)
Hence, $\cos\left(A-B\right)$cos(AB) $=$= $\cos A\cos B+\sin A\sin B$cosAcosB+sinAsinB

 

From this identity, it is possible to generate several others by using substitution and other properties already established. 

To establish a rule for $\cos\left(A+B\right)$cos(A+B), make the substitution of $-B$B for angle $B$B:

$\cos\left(A-\left(-B\right)\right)$cos(A(B)) $=$= $\cos A\cos\left(-B\right)+\sin A\sin\left(-B\right)$cosAcos(B)+sinAsin(B)

Using the fact that $\cos\left(-\theta\right)=\cos\theta$cos(θ)=cosθ and $\sin\left(-\theta\right)=-\sin\theta$sin(θ)=sinθ, leads to:

 $\cos\left(A+B\right)$cos(A+B) $=$= $\cos A\cos B-\sin A\sin B$cosAcosBsinAsinB

The corresponding formulas for sine are obtained by using the complementary angle relationship: $\sin\theta=\cos\left(\frac{\pi}{2}-\theta\right)$sinθ=cos(π2θ).

Writing $\sin\left(A-B\right)$sin(AB) as $\cos\left(\frac{\pi}{2}-\left(A-B\right)\right)$cos(π2(AB)), it follows that: 

$\sin\left(A-B\right)$sin(AB) $=$= $\cos\left(\left(\frac{\pi}{2}-A\right)+B\right)$cos((π2A)+B)
  $=$= $\cos\left(\frac{\pi}{2}-A\right)\cos B-\sin\left(\frac{\pi}{2}-A\right)\sin B$cos(π2A)cosBsin(π2A)sinB
  $=$= $\sin A\cos B-\cos A\sin B$sinAcosBcosAsinB

The rule for $\sin\left(A+B\right)$sin(A+B) can be obtained by again making the substitution $-B$B for the angle $B$B. Hence:

$\sin\left(A+B\right)\equiv\sin A\cos B+\cos A\sin B$sin(A+B)sinAcosB+cosAsinB

The corresponding formulas for the tangent function are obtained by expanding $\tan\left(A+B\right)=\frac{\sin\left(A+B\right)}{\cos\left(A+B\right)}$tan(A+B)=sin(A+B)cos(A+B)

After some simplification:

$\tan\left(A+B\right)=\frac{\tan A+\tan B}{1-\tan A\tan B}$tan(A+B)=tanA+tanB1tanAtanB

and

$\tan\left(A-B\right)=\frac{\tan A-\tan B}{1+\tan A\tan B}$tan(AB)=tanAtanB1+tanAtanB

Summarising all these rules together:

Angle sun and difference formulae
$\cos\left(A+B\right)$cos(A+B) $=$= $\cos A\cos B-\sin A\sin B$cosAcosBsinAsinB
$\cos\left(A-B\right)$cos(AB) $=$= $\cos A\cos B+\sin A\sin B$cosAcosB+sinAsinB
$\sin\left(A+B\right)$sin(A+B) $=$= $\sin A\cos B+\cos A\sin B$sinAcosB+cosAsinB
$\sin\left(A-B\right)$sin(AB) $=$= $\sin A\cos B-\cos A\sin B$sinAcosBcosAsinB
$\tan\left(A+B\right)$tan(A+B) $=$= $\frac{\tan A+\tan B}{1-\tan A\tan B}$tanA+tanB1tanAtanB
$\tan\left(A-B\right)$tan(AB) $=$= $\frac{\tan A-\tan B}{1+\tan A\tan B}$tanAtanB1+tanAtanB

If $B=A$B=A in the above identities, then the following useful double angle formulae are obtained:

Double angle formulae
$\sin2A$sin2A $=$= $2\sin A\cos A$2sinAcosA
$\cos2A$cos2A $=$= $\cos^2\left(A\right)-\sin^2\left(A\right)$cos2(A)sin2(A)
$\tan2A$tan2A $=$= $\frac{2\tan A}{1-\tan^2\left(A\right)}$2tanA1tan2(A)

Worked example

Example 3

Find an 'exact value' expression for $\sin\frac{\pi}{12}$sinπ12.

Think: Recall that integer multiples of $\frac{\pi}{4}$π4 and $\frac{\pi}{6}$π6 have exact values when evaluated using a trigonometric function. $\frac{\pi}{12}$π12 is not an integer multiple of either of these but can we write this as a sum or difference of angles with familiar values? 

Do: It may be easier to think in multiples of $\frac{1}{12}$112. We notice that $\frac{1}{12}=\frac{3}{12}-\frac{2}{12}$112=312212 and hence,$\frac{\pi}{12}=\frac{\pi}{4}-\frac{\pi}{6}$π12=π4π6. Using our rule for $\sin\left(A-B\right)$sin(AB):

$\sin\left(A-B\right)$sin(AB) $=$= $\sin A\cos B-\cos A\sin B$sinAcosBcosAsinB
$$ $=$= $\sin\frac{\pi}{4}\cos\frac{\pi}{6}-\cos\frac{\pi}{4}\sin\frac{\pi}{6}$sinπ4cosπ6cosπ4sinπ6
  $=$= $\frac{\sqrt{2}}{2}.\frac{\sqrt{3}}{2}-\frac{\sqrt{2}}{2}.\frac{1}{2}$22.3222.12
  $=$= $\frac{\sqrt{6}-\sqrt{2}}{4}$624

Practice questions

Question 3

Using the expansion of $\cos\left(A+B\right)$cos(A+B), find the exact value of $\cos\left(\frac{7\pi}{12}\right)$cos(7π12). Express the value in rationalised form.

Question 4

Express $\cos\left(3\theta+x\right)\cos3\theta-\sin\left(3\theta+x\right)\sin3\theta$cos(3θ+x)cos3θsin(3θ+x)sin3θ in simplest form.

Question 5

By simplifying the left hand side of the identity , prove that $\tan\left(\theta+\alpha\right)\tan\left(\theta-\alpha\right)=\frac{\tan^2\left(\theta\right)-\tan^2\left(\alpha\right)}{1-\tan^2\left(\theta\right)\tan^2\left(\alpha\right)}$tan(θ+α)tan(θα)=tan2(θ)tan2(α)1tan2(θ)tan2(α).

Question 6

If $\tan A+\tan B=-5$tanA+tanB=5 and $\tan A\tan B=6$tanAtanB=6, prove that $\sin\left(A+B\right)=\cos\left(A+B\right)$sin(A+B)=cos(A+B).

Outcomes

U2.AoS1.2

the relationships sin(x) for small values of x , sin^2(x) + cos^2(x)=1 and tan(x)= sin(x)/cos(x)

U2.AoS1.13

sin(x)=x for small values of x

What is Mathspace

About Mathspace