topic badge
AustraliaVIC
VCE 11 Methods 2023

8.09 Symmetries

Lesson

Symmetries

A previous lesson explored the many symmetries in the functions for sine and cosine. Let's start with a recap of a few important relationships that arise from these symmetries.

Comparing the coordinates of the points around the circle leads to the following rules:

Symmetry formulae

If we focus on the $y$y-coordinate, we can find:

$\sin\left(\pi-\theta\right)$sin(πθ) $=$= $\sin\theta$sinθ
$\sin\left(\pi+\theta\right)$sin(π+θ) $=$= $-\sin\theta$sinθ
$\sin\left(2\pi-\theta\right)$sin(2πθ) $=$= $-\sin\theta$sinθ
$\sin\left(-\theta\right)$sin(θ) $=$= $-\sin\theta$sinθ

If we focus on the $x$x-coordinate, we can find:

$\cos\left(\pi-\theta\right)$cos(πθ) $=$= $-\cos\theta$cosθ
$\cos\left(\pi+\theta\right)$cos(π+θ) $=$= $-\cos\theta$cosθ
$\cos\left(2\pi-\theta\right)$cos(2πθ) $=$= $\cos\theta$cosθ
$\cos\left(-\theta\right)$cos(θ) $=$= $\cos\theta$cosθ

By using the definition $\tan\theta=\frac{\sin\theta}{\cos\theta}$tanθ=sinθcosθ similar rules can be created for $\tan\theta$tanθ. Try these in the worked example below.

Practice question

Question 1

Let $\theta$θ be an acute angle (in radians).

If $\tan\theta=0.52$tanθ=0.52, find the value of:

  1. $\tan\left(\pi-\theta\right)$tan(πθ)

  2. $\tan\left(\pi+\theta\right)$tan(π+θ)

  3. $\tan\left(2\pi-\theta\right)$tan(2πθ)

  4. $\tan\left(-\theta\right)$tan(θ)

 

Further symmetries

Let's look at the relationship between trigonometric functions of complementary angles, that is, angles that add to $90^\circ$90° or $\frac{\pi}{2}$π2 radians.

From the diagram, notice that the triangle formed by the angle $\theta$θ to the point $P$P has its sides flipped to form the triangle at angle $\frac{\pi}{2}-\theta$π2θ to point $Q$Q. Since the $x$x- and $y$y-coordinates have swapped when comparing the two points, the following rules can be extracted:

Complementary angle relationships
$\sin\left(\frac{\pi}{2}-\theta\right)$sin(π2θ) $=$= $\cos\theta$cosθ
$\cos\left(\frac{\pi}{2}-\theta\right)$cos(π2θ) $=$= $\sin\theta$sinθ

Also, look at the relationship between trigonometric functions at an angle $\theta$θ compared to one rotated further by  $90^\circ$90° or $\frac{\pi}{2}$π2 radians:

Again, by comparing the $x$x- and $y$y-coordinates of point $P$P compared to point $Q$Q, this leads to the following rules:

Further angle relationships
$\sin\left(\frac{\pi}{2}+\theta\right)$sin(π2+θ) $=$= $\cos\theta$cosθ
$\cos\left(\frac{\pi}{2}+\theta\right)$cos(π2+θ) $=$= $-\sin\theta$sinθ

Practice questions

Question 2

Given that $\sin x=0.46$sinx=0.46, find the exact value of $\cos\left(90^\circ-x\right)$cos(90°x).

Question 3

Prove that $\frac{\sin x\sin\left(90^\circ-x\right)}{\cos x\cos\left(90^\circ-x\right)}=1$sinxsin(90°x)cosxcos(90°x)=1

 

Outcomes

U2.AoS1.12

the unit circle and exact values of sine, cosine and tangent for 0,pi/6, pi/4, pi/3, pi/2 (and their degree equivalents) and integer multiples of these

U2.AoS1.4

symmetry properties, complementary relations and periodicity properties for sine, cosine and tangent functions

What is Mathspace

About Mathspace