topic badge
AustraliaVIC
VCE 11 Methods 2023

7.03 Exponential equations

Lesson

This section explores how to solve problems where the unknown is in the exponent. These are called exponential equations, and examples include:

$3^x=81$3x=81$5\times2^x=40$5×2x=40 and $7^{5x-2}=20$75x2=20.

Technology can be used to solve these types of equations, as well as the application of logarithms. However, in many cases, algebraic manipulation using the index laws will allow for the solution of exponential equations without a calculator. To achieve this, write both sides of the equation with the same base, then equate the indices.

Equating indices

When both sides of an exponential equation are written with the same base, we can equate the indices:

If  $a^x=a^y$ax=ay,  then $x=y$x=y.

To write both sides with the same base it is helpful to be familiar with low powers of prime numbers, so these can be recognised and re-expressed in index form. It is also vital to be confident with the index laws. (Tip: keep a table of the laws from 5.01 and 5.02 handy).

 

Worked examples

Example 1 

Solve $5^p=125$5p=125, for $p$p.

Think: One side of the equation is a power of $5$5, can we write the other side also as a power of $5$5?

Do:

$5^p$5p $=$= $125$125  
$5^p$5p $=$= $5^3$53  
$\therefore$  $p$p $=$= $3$3 , by equating indices
Example 2

Solve $\left(27\right)^{x+1}=\frac{1}{81}$(27)x+1=181, for $x$x.

Think: Can you spot a common base that both sides could be written in? Both $27$27 and $81$81 are powers of $3$3.

Do: Use index laws to write both sides as a single power of three and then equate the indices.

$\left(27\right)^{x+1}$(27)x+1 $=$= $\frac{1}{81}$181  
$\left(3^3\right)^{x+1}$(33)x+1 $=$= $\frac{1}{3^4}$134  
$3^{3x+3}$33x+3 $=$= $3^{-4}$34  
Hence.  $3x+3$3x+3 $=$= $-4$4 , by equating indices
$3x$3x $=$= $-7$7  
$\therefore$  $x$x $=$= $\frac{-7}{3}$73  
Example 3

Solve $5\times16^y=40\times\sqrt[3]{32}$5×16y=40×332, for $y$y.

Think: We have a power of $2$2 on the left-hand side but it is multiplied by a $5$5. If we first divide both sides by the factor of $5$5, can we then write both sides as powers of $2$2?

Do:

$5\times16^y$5×16y $=$= $40\times\sqrt[3]{32}$40×332
$\left(16\right)^y$(16)y $=$= $8\times\sqrt[3]{32}$8×332

We now have an equation with $16$16, $8$8 and $32$32 which can all be written as powers of $2$2. Proceed with index laws and remember $\sqrt[n]{x}=x^{\frac{1}{n}}$nx=x1n.

$\left(16\right)^y$(16)y $=$= $8\times\sqrt[3]{32}$8×332  
$\left(2^4\right)^y$(24)y $=$= $2^3\times\left(2^5\right)^{\frac{1}{3}}$23×(25)13  
$2^{4y}$24y $=$= $2^{\left(3+\frac{5}{3}\right)}$2(3+53)  
$2^{4y}$24y $=$= $2^{\frac{14}{3}}$2143  
Hence, $4y$4y $=$= $\frac{14}{3}$143 , by equating indices
$\therefore y$y $=$= $\frac{14}{12}$1412  
Example 4

Solve $2^{2x}-20\left(2^x\right)+64=0$22x20(2x)+64=0 for $x$x.

Think: We have index rules for multiplying and dividing powers but not adding. Since we have three terms added together here we will need a different starting approach. Notice the first term can be written as $\left(2^x\right)^2$(2x)2 and the middle term also has a $2^x$2x. In fact, we have a quadratic equation in terms of $2^x$2x. This may be easier to see if we make a substitution.

Do: Let $y=2^x$y=2x, then:

$2^{2x}-20\left(2^x\right)+64$22x20(2x)+64 $=$= $0$0
$\left(2^x\right)^2-20\left(2^x\right)+64$(2x)220(2x)+64 $=$= $0$0
Make the substitution $y$y $=$= $2^x$2x
$y^2-20y+64$y220y+64 $=$= $0$0
$\left(y-16\right)\left(y-4\right)$(y16)(y4) $=$= $0$0
$\therefore$  $y$y $=$= $4$4 or $16$16

Since $y=2^x$y=2x, we have $2^x=4$2x=4 or $2^x=16$2x=16, and thus our solutions are $x=2$x=2 or $x=4$x=4.

 

 

Practice questions

Question 1

Solve the equation $\left(2^2\right)^{x+7}=2^3$(22)x+7=23 for $x$x.

Question 2

Solve the equation $25^{x+1}=125^{3x-4}$25x+1=1253x4.

Question 3

Consider the equation

$\left(2^x\right)^2-9\times2^x+8=0$(2x)29×2x+8=0

  1. The equation can be reduced to a quadratic equation by using a certain substitution.

    By filling in the gaps, determine the correct substitution that would reduce the equation to a quadratic.

    Let $m=\left(\editable{}\right)^{\editable{}}$m=()

  2. Solve the equation for $x$x by using the substitution $m=2^x$m=2x.

Outcomes

U2.AoS2.1

use of inverse functions and transformations to solve equations of the form Af(nx)+c, and f is sine, cosine, tangent or a^x, using exact or approximate values on a given domain

U2.AoS2.2

exponent laws and logarithm laws, including their application to the solution of simple exponential equations

What is Mathspace

About Mathspace