The tangent function can be defined as follows:
Key features of the graph of $y=\tan\left(\theta\right)$y=tan(θ) are:
The asymptotes of the function are where the angle $\theta$θ would cause the line $OP$OP to be vertical and hence the slope is undefined. We can also see this through the definition $\tan\theta=\frac{\sin\theta}{\cos\theta}$tanθ=sinθcosθ. The function is undefined where $\cos\theta=0$cosθ=0 and the graph approaches the vertical lines at these values forming asymptotes.
The fact that the tangent function repeats at intervals of $\pi$π can be verified by considering the unit circle diagram. Either by considering the slope of the line $OP$OP and how the slope will be the same for a point at an angle of $\theta$θ or at at angle of $\theta+\pi$θ+π. Or we can consider this algebraically by looking at the ratio $\frac{\sin\theta}{\cos\theta}$sinθcosθ. If $\pi$π is added to an angle $\theta$θ, then the diagram below shows that $\sin(\theta+\pi)$sin(θ+π) has the same magnitude as $\sin\theta$sinθ but opposite sign. The same relation holds between $\cos(\theta+\pi)$cos(θ+π) and $\cos\theta$cosθ.
We make use of the definition: $$
$\tan(\theta+\pi)$tan(θ+π) | $=$= | $\frac{\sin(\theta+\pi)}{\cos(\theta+\pi)}$sin(θ+π)cos(θ+π) |
$=$= | $\frac{-\sin\theta}{-\cos\theta}$−sinθ−cosθ | |
$=$= | $\tan\theta$tanθ |
Consider the graph of $y=\tan x$y=tanx for $-2\pi\le x\le2\pi$−2π≤x≤2π.
How would you describe the graph?
Periodic
Decreasing
Even
Linear
Which of the following is not appropriate to refer to in regard to the graph of $y=\tan x$y=tanx?
Amplitude
Range
Period
Asymptotes
The period of a periodic function is the length of $x$x-values that it takes to complete one full cycle.
Determine the period of $y=\tan x$y=tanx in radians.
State the range of $y=\tan x$y=tanx.
$-\infty
$y>0$y>0
$\frac{-\pi}{2}
$-\pi
As $x$x increases, what would be the next asymptote of the graph after $x=\frac{7\pi}{2}$x=7π2?