topic badge
AustraliaVIC
VCE 12 Methods 2023

4.05 Properties of logarithms

Worksheet
Properties of logarithms
1

Write each of the following expressions as a single logarithmic term:

a

\log_{10} 5 + \log_{10} 4

b

\log_{10} 18 - \log_{10} 3

c

\log_{10} 7 - \log_{10} 28

d

\log_{5} 11 + \log_{5} 2 + \log_{5} 9

e

\log_{10} 5 + \log_{10} 7 - \log_{10} 3

f

\log_{7} 12 - \left(\log_{7} 2 + \log_{7} 3\right)

g

3 \left(\log_{10} 9 + \log_{10} 2\right)

h

3 \left(\log_{10} 6 - \log_{10} 2\right)

i

2 \log_{5} 22 - 2 \log_{5} 11

j

5 \log_{10} 6 + 5 \log_{10} 3

k

3 + \log_{4} 7

l
\log_{3} \left(5x\right) + \log_{3} \left(2y\right)
2

Simplify each of the following expressions in exact form without using a calculator:

a

\log 4 + \log 9

b

\log_{10} \left(10\right) + \log_{10} \left(10\right)

c

\log_{10} 11 + \log_{10} 2 + \log_{10} 9

d

\log_{10} 12 - \left(\log_{10} 2 + \log_{10} 3\right)

e

\dfrac{\log_{10} 4}{\log_{10} 2}

f

\dfrac{\log_{4} 125}{\log_{4} 5}

g

\dfrac{\log a^{8}}{\log a^{4}}

h

\dfrac{\log a^{3}}{\log \sqrt[3]{a}}

i

\dfrac{\log \left(\dfrac{1}{x^{4}}\right)}{\log x}

j

\log_{10} 10 + \dfrac{\log_{10} \left(15^{20}\right)}{\log_{10} \left(15^{5}\right)}

k

\dfrac{8 \log_{10} \left(\sqrt{10}\right)}{\log_{10} \left(100\right)}

l

10^{\log w}

m

\log 10 x + \log 10 y

n

x^{ 4 \log_{x} 3 - 6 \log_{x} 2}

o

y = \log_{a} \left(\sqrt{x} + \sqrt{x - 1}\right) + \log_{a} \left(\sqrt{x} - \sqrt{x - 1}\right)

3

Given that a > 1, fully simplify the following expressions:

a

\log_{a} \left(\dfrac{1}{a}\right)

b

\log_{a} \left(a^{9}\right)

c

\log_{a} \left(\dfrac{1}{a^{2}}\right)

d

\log_{a} \left(\sqrt{a}\right)

e

\log_{a} \left(\dfrac{1}{\sqrt{a}}\right)

4

Write each of the following as a single logarithm or integer:

a

5 \log x^{3} - 4 \log x^{2}

b

5 \log x + 3 \log y

c

8 \log x - \dfrac{1}{3} \log y

d

7 \log x - \log \left(\dfrac{1}{x}\right) - \log y

e

7 \log_{10} 5 - 21 \log_{10} 25

f

5 \log_{10} 8 - 3 \log_{10} 4

g

2 \log_{6} 3 + \dfrac{1}{3} \log_{6} 64

h

\log_{2} 36 - 2 \log_{2} 3

5

Write \log \left(\dfrac{2 u}{3 v}\right) in terms of \log 2, \log u, \log 3 and \log v.

6

Express the following as products:

a

\log_{a} A^{ - 2 }

b

\log_{6} \sqrt{w}

c

\log_{p} q^ r

d

\log_{3} B^ \frac{1}{3}

7

Rewrite the following as the sum or difference of logarithms without any powers or surds:

a

\log_{9} u v

b
\log_{5} \left(\dfrac{9}{7}\right)
c

\log \left(x^{\frac{2}{5}}\right)

d
\log_{b} \left(x^{2}\right)
e

\log \left( 3 x^{ - 1 }\right)

f

\log \left( 7 x^{ - 4 }\right)

g

\log \left(\left( 5 x\right)^{ - 7 }\right)

h

\log \left(\left( 2 x\right)^{ - 1 }\right)

i

\log \left(\dfrac{1}{x y}\right)

j
\log \left(\dfrac{p q}{r}\right)
k

\log \left(\left( 3 x + 7\right)^{ - 1 }\right)

l

\log \left(\sqrt{\dfrac{c^{8}}{d}}\right)

8

Rewrite the expression \log x^{2} + \log x^{3} in the form k \log x.

9

Show that \log_{2} 5 = \dfrac{1}{\log_{5} 2}.

10

Amy has written the following:

\log_{b} 64 = \log_{b} \left( 64 \times 1\right) = \log_{b} 64 + \log_{b} 1

Is Amy correct? Explain your answer.

11

Rewrite the following in terms of base 10 logarithms:

a

\log_{4} 16

b

\log_{3} 0.9

c

\log_{3} \sqrt{5}

d

\log_{a}B

12

Rewrite \log_{3} 20 in terms of base 4 logarithms.

13

Use the properties of logarithms to evaluate the following expressions:

a

\log_{2} 16

b

\log_{8} \left(\dfrac{1}{64}\right)

c

\log_{5} 0.2

d

\log_{4} 1

e

\log_{36} 6

f

\log_{2} \left(\dfrac{1}{4}\right)

g

\log_{10} 0.1

h

\log_{7} \sqrt[3]{7}

i

2^{\log_{2} 3}

j

\log_{2} \sqrt[4]{2}

k

\log_{3} 3

l

\log_{16} \sqrt{2}

m

\log_{2} \left(\sqrt[3]{\dfrac{1}{16}}\right)

n

\log_{5} 125^{\frac{5}{4}}

14

Use the properties of logarithms to evaluate the following expressions:

a

\log_{10} 10^{\frac{5}{4}}

b

\log_{10} \left(10^{\sqrt{5}}\right)

c

\log_{16} \sqrt{2}

d

\log_{10} 2 + \log_{10} 5

e

\log_{4} 8 + \log_{4} 2

f

\log_{6} 12 + \log_{6} 18

g

\log_{2} 72 - \log_{2} 9

h

\log_{2} 36 - 2 \log_{2} 3

i

\log_{6} 12 + \log_{6} 15 - \log_{6} 5

j

\log_{3} 2 - \log_{3} 18

k

2 \log_{6} 3 + \dfrac{1}{3} \log_{6} 64

15

Consider the following logarithmic expressions:

i

Rewrite the expression in terms of base 10 logarithms.

ii

Hence, evaluate each correct to two decimal places.

a
\log_{8} 21
b
\log_{3} 15
c
\log_{2} 0.35
d
\log_{4} \sqrt{5}
16

If \log_{10} 6 = 0.778, calculate \log_{10} \left(\dfrac{1}{216}\right), without using a calculator.

17

If \log_{a} 3 = 1.16 and \log_{a} 2 = 0.73, find the value of \log_{a} \sqrt{54}, without using a calculator.

18

If \log_{k} a = 1.64, find the value of \log_{k} k a^{4}.

19

Using the rounded values \log_{x} 3 = 0.62 and \log_{x} 4 = 0.78, find the value of each of the following expressions:

a

\log_{x} 9

b

\log_{x} \sqrt{3}

c

\log_{x} 4 x

d

\log_{x} \dfrac{1}{3}

e

\log_{x} 36

20

Given that \log_{b} x = 2.6 and \log_{b} y = 4.2, determine the value of the following:

a

\log_{b} x^{3}

b

\log_{b} \sqrt[3]{y}

c

\log_{b} \left( x^{2} \sqrt{y}\right)

d

\log_{b} \left(\dfrac{b}{x}\right)

21

If \log_{x} 4 = 3.42 and \log_{x} 12 = 6.13, determine the value of the following:

a
\log_{x} \left(\dfrac{48}{x}\right)
b
\log_{x}3
c
\log_{x} \dfrac{4}{3}
d

\log_{x} \left(\dfrac{1}{3 x}\right)

22

Prove the following properties of logarithms:

a

\log_{a} x^{n} = n \log_{a} x

b
\log_{a} \left(\dfrac{x}{y}\right) = \log_{a} x - \log_{a} y
Sign up to access Worksheet
Get full access to our content with a Mathspace account

Outcomes

U34.AoS2.11

apply algebraic, logarithmic and circular function properties to the simplification of expressions and the solution of equations

U34.AoS2.7

exponent laws and logarithm laws

What is Mathspace

About Mathspace