the inverse of a matrix and the condition for a matrix to have an inverse, including determinant for transition matrices, assuming the next state only relies on the current state with a fixed population
U4.AoS2.4
transition diagrams and transition matrices and regular transition matrices and their identification
U4.AoS2.5
use matrix recurrence relations to generate a sequence of state matrices, including an informal identification of the equilibrium or steady state matrix in the case of regular state matrices
U4.AoS2.6
construct a transition matrix from a transition diagram or a written description and vice versa