Use the triangle and the Pythagorean theorem to complete the following:
Find the length of interval $AB$AB.
Find the length of interval $BC$BC.
Complete the steps which calculate the length $AC$AC:
$AC^2=AB^2+BC^2$AC2=AB2+BC2
$AC^2=$AC2=$\left(\editable{}\right)^2+\left(\editable{}\right)^2$()2+()2
$AC^2=$AC2=$\editable{}+\editable{}$+
$AC^2=$AC2=$\editable{}$
Therefore, find the exact length of $AC$AC.
Use the triangle and the Pythagorean theorem to complete the following:
The points $P$P $\left(-5,10\right)$(−5,10), $Q$Q $\left(-5,6\right)$(−5,6) and $R$R $\left(-2,6\right)$(−2,6) are the vertices of a right-triangle, as shown on the number plane.
The points $P$P $\left(-2,-6\right)$(−2,−6), $Q$Q $\left(-2,-1\right)$(−2,−1) and $R$R $\left(6,-1\right)$(6,−1) are the vertices of a right-triangle, as shown on the number plane.