topic badge

4.03 Multistep equations

Worksheet
Multistep equations
1

Solve:

a
10 \left(p + 10\right) = 120
b
5 \left(t + 9\right) = 60
c
4 \left(x + 5\right) = 20
d
2 \left(p + 14\right) = 58
e
3 \left(p + 9\right) = 48
f

9 \left( x + 2 \right) = 27

g

2 \left( p + 9 \right) = 28

h

6 \left( x + 5 \right) = 54

i
3\left(n + 5\right) = 24
j
4 \left(k - 4\right) = 48
k
3 \left(s - 16\right) = - 21
l
9 \left(p - 3\right) = 0
m
2 \left(l - 12\right) = - 10
n
4 \left(s - 29\right) = 4
o
3\left(s - 9\right) = 3
p

13 \left( s - 7 \right) = 143

q

4 \left(k - 4\right) = 48

r
5 \left(n - 15\right) = 35
2

Solve:

a

3 \left( 4 s + 1\right) = - 21

b

3 \left( 2 x + 1\right) = 15

c

2 \left( 3 t - 7\right) = 16

d

- 5 \left( 3 x + 8\right) = - 10

e

2 \left( - 3 g + 7\right) = - 16

f

- 2 \left( 3 x - 5\right) = 28

g

- 3 \left( - 2 h - 5\right) = 33

h

- 3 \left( - 2 x + 7\right) = -45

i

4 \left( 5 x - 1\right) = - 24

j

- 4 \left( 5 x + 6\right) = - 104

k

2 \left( 7 + 2x \right) = 38

l

- 3 \left( 4 - x \right) = - 12

m

5 \left( 2 x - 6 \right) = 100

n

6 \left( 3 x + 15 \right) = -72

o

9 \left( 8 - x \right) = 45

p

10 \left( 7 - 3x \right) = 20

q

20 = 2 \left( 3x + 11 \right)

r

16 = 4 \left(2x + 9\right)

s

18 = 3 \left( 2x + 14 \right)

t

-5 = 5 \left(3x + 1\right)

u

26 = 13 \left( 8 - 4x \right)

v

32 = 8 \left(16 - 5x\right)

3

Ryan attempted to solve the equation 9 \left( 4x - 6 \right) = 18. His work is shown below:

\begin{aligned} 9 \left( 4x - 6 \right) &= 18 \\ 4x - 6 &= 9 \\ 4x &= 15 \\x &= \dfrac{15}{4} \end{aligned}
a

What was his mistake?

b

Solve the equation correctly.

4

Solve:

a

3 \left(w + 8\right) + 5 = 44

b

9 \left(x - 7\right) + 8 = 26

c

- 5 \left(g + 4\right) + 9 = - 41

d

- 7 \left(x + 5\right) + 4 = - 17

e

6 \left(q + 1\right) - 5 = - 23

f

4 \left(x + 6\right) - 8 = 48

g

-8 \left(x + 4\right) - 3 = - 59

h

- 2 \left(x - 2\right) - 7 = - 29

i

2 \left(x - 9\right) - 4 = 16

j

5 \left(x - 3\right) - 7 = - 52

5

Solve:

a

- \dfrac{y}{3} + 10 = 17

b

- \dfrac{u}{4} + 15 = 8

c

\dfrac{5 x}{8} - 9 = - 4

d

\dfrac{8 c}{3} + 5 = - 11

e

\dfrac{5 x}{3} + 11 = 21

f

\dfrac{- 3 c}{4} + 5 = 14

g

- \dfrac{3 x}{4} + 5 = - 7

h

\dfrac{3 x}{4} - 5 = - 11

i

\dfrac{4 x}{7} - 6 = - 14

j

- \dfrac{5 x}{6} - 6 = 14

6

Solve:

a

\dfrac{x - 9}{5} + 4 = 7

b

\dfrac{x - 3}{5} - 8 = - 7

c

\dfrac{x + 2}{3} - 25 = - 22

d

\dfrac{x + 16}{3} + 5 = 3

e

\dfrac{2 x - 12}{3} = 0

f

\dfrac{3 x + 6}{2} = 15

g

\dfrac{8 x + 4}{5} = - 4

h

\dfrac{- 3 t - 6}{7} = - 3

i

\dfrac{- 13 - 4 r}{3} = - 15

j

\dfrac{- 9 + 5 x}{2} = - 22

7

Solve:

a
\dfrac{2\left(x - 4 \right)}{3}=8
b
\dfrac{5\left(x +1 \right)}{2}=10
c
\dfrac{-3\left(x -3 \right)}{4}=0
d
\dfrac{6\left(x +5 \right)}{7}=12
e
\dfrac{9\left(x +10 \right)}{2}=-6
f
\dfrac{4\left(x - 2 \right)}{3}=-3
g
\dfrac{7\left(x - 9 \right)}{5}=14
h
\dfrac{2\left(x +11 \right)}{9}=8
8

Solve:

a
2\left( \dfrac{x}{3} + 1 \right) = 6
b
5\left( \dfrac{x}{2} + 7 \right) = 60
c
4\left( \dfrac{x}{5} - 3 \right) = -12
d
3\left( \dfrac{x}{4} - 10 \right) = 15
e
18 = 2\left( \dfrac{x}{5} - 7 \right)
f
40 = 10\left( \dfrac{x}{6} - 1 \right)
g
8\left(4 + \dfrac{x}{2} \right) = 48
h
-4\left(12 - \dfrac{x}{3} \right) = -64
9

Solve:

a

\dfrac{x}{6} = \dfrac{5}{3}

b

\dfrac{7}{9} = \dfrac{4}{x}

c

\dfrac{x}{6} = 2\dfrac{2}{3}

d

\dfrac{7.8}{7.5} = \dfrac{x}{5}

e

\dfrac{n}{6} + \dfrac{n}{5} = 11

f

\dfrac{x}{5} - \dfrac{x}{2} = 3

g

\dfrac{- x}{5} + \dfrac{x}{3} = 4

h

\dfrac{- x}{5} - \dfrac{x}{7} = - 24

i

\dfrac{9 x}{3} + \dfrac{9 x}{2} = - 5

j

\dfrac{3 x}{5} - \dfrac{4 x}{6} = - 5

k

\dfrac{5 x}{3} - 3 = \dfrac{3 x}{8}

l

\dfrac{3 x}{2} + 5 = \dfrac{2 x}{3}

m

\dfrac{2 x}{3} - 2 = \dfrac{5 x}{2} + 4

n

\dfrac{8 x}{3} + 4 = \dfrac{7 x}{4} - 6

o

\dfrac{8 x - 2}{3} = \dfrac{6 x - 3}{4}

p

\dfrac{6 x + 3}{3} = \dfrac{7 x - 2}{5}

q

x + \dfrac{5 x-1}{4} = 1

r

\dfrac{2 x - 3}{6} - \dfrac{3 x - 2}{5} = - 5

s

x + \dfrac{3 x + 4}{2} = 3

t

\dfrac{5 x - 1}{3} - \dfrac{2 x - 4}{5} = - 1

Applications
10

The formula to convert temperature from Celsius to Fahrenheit is F = 32 + \dfrac{9 C}{5}.

a

If C = 35, find the value of F.

b

If F = 212, find the value of C.

11

A construction company has spent \$22\,500\,000 to develop new cranes, and wants to limit the cost of development and production of each crane to \$6000.

Given that the production cost of each crane is \$3000, the cost for development and production of x cranes is given by 3000 x + 22\,500\,000 dollars, and so the cost of each crane is \dfrac{3000 x + 22\,500\,000}{x}.

Solve the equation \dfrac{3000 x + 22\,500\,000}{x} = 6000 to find the number of cranes that must be sold for the cost of development and production to be \$6000.

Sign up to access Worksheet
Get full access to our content with a Mathspace account

Outcomes

MA.8.AR.2.1

Solve multi-step linear equations in one variable, with rational number coefficients. Include equations with variables on both sides.

What is Mathspace

About Mathspace