topic badge
iGCSE (2021 Edition)

13.06 Dilations

Lesson

We've learnt that similar triangles have all corresponding sides in the same ratio. So if a shape is enlarged or reduced, all the side lengths will increase or decrease in the same ratio. This enlargement or reduction is called a dilation. For example, let's say $\triangle ABC$ABC has side lengths of $3$3cm, $4$4cm and $5$5cm. If it is dilated by a scale factor of $2$2 to produce $\triangle XYZ$XYZ, then $\triangle XYZ$XYZ will have side lengths of $6$6cm, $8$8cm and $10$10cm, as shown below.

Dilating a shape

Well, we need two things:

  1. A centre of dilation: a point from where we start the enlargement. This may be inside or outside the original shape.
  2. A dilation factor: the ratio by which we increase/ decrease the shape. We calculate a dilation factor just like we would calculate the ratio of the sides in similar triangles. 
Remember!

A dilation factor can increase or decrease the size of the new shape e.g. A dilation factor of $3$3 means the new shape will be $3$3 times as big, whereas a dilation factor of $\frac{1}{2}$12 means the new shape will be $\frac{1}{2}$12 as big as the original.

In general,

  • If the dilation factor, $k$k, has $k>1$k>1, the image will be larger than the preimage
  • If the dilation factor, $k$k, has $00<k<1, the image will be smaller than the preimage

 

Dilation using vertex coordinates

1. Find the distance from the centre of dilation to a point on the object.

2. Using the given scale factor, draw the line from the centre of dilation, through the original vertex until you reach the necessary distance. In our example, the dilation factor is $2$2, so instead of $2$2 units, our new line is going to be $4$4 units.

3. Repeat steps 1 and 2 for each point in the object.

4. Join up the points with lines to draw the image.

 

 

Mapping rules for dilations

If a shape is being dilated by a factor of $a$a, then the following mapping occurs:

$(x,y)\to(ax,a)$(x,y)(ax,a)

For example, If a shape was being dilated by a factor of $2$2 then $(x,y)\to(ax,a)$(x,y)(ax,a), so each of the image points are double the original points. For example, the image point for $(2,-3)$(2,3) would be $(4,-6)$(4,6).

 

Dilation using rays

We can enlarge enlarge or reduce shapes even without a coordinate plane. We just need a ruler.

1. Draw a point outside the shape. This will be your centre of dilation.

2. Using a ruler, measure from the centre of dilation to each of the vertices in your shape and record the distances.

3. Multiply and record all the distances you found in step 3 by the dilation factor. Our dilation in this example is 3.

4. Draw each of the lines from the centre of dilation, through the corresponding side of the existing shape, to the length you calculate in step 4.

5. Join up the points at the ends of the new lines you have draw and there you have it- your new shape!

 

Worked example 

Question 1

A rectangle with vertices $A$A$\left(-8,8\right)$(8,8), $B$B$\left(8,8\right)$(8,8), $C$C$\left(8,-8\right)$(8,8) and $D$D$\left(-8,-8\right)$(8,8) is dilated using the origin as the centre of dilation. The vertices of the new rectangle are $A'$A$\left(-4,4\right)$(4,4), $B'$B$\left(4,4\right)$(4,4), $C'$C$\left(4,-4\right)$(4,4) and $D'$D$\left(-4,-4\right)$(4,4). What is the dilation factor?

Think: The original coordinate values would be multiplied by the dilation factor to give the new coordinate values.

Do: The length of side $AB$AB is $16$16 units. The length of side $A'B'$AB is $8$8 units. $\frac{8}{16}=\frac{1}{2}$816=12, so the dilation factor is $\frac{1}{2}$12.

 

Practice questions

Question 2

Identify if rectangle $A'B'C'D'$ABCD is a dilation of rectangle $ABCD$ABCD.

Loading Graph...

A coordinate plane is marked from 0 to 20 on both $x$x- and $y$y- axes with two quadrilaterals drawn. Quadrilateral ABCD is smaller and is formed with vertices A $\left(3,4\right)$(3,4), B $\left(8,4\right)$(8,4), C $\left(8,9\right)$(8,9), and D $\left(3,9\right)$(3,9). quadrilateral A'B'C'D' is larger and is formed with vertices A' $\left(6,8\right)$(6,8), B' $\left(15,8\right)$(15,8), C' $\left(15,18\right)$(15,18), and D' $\left(6,18\right)$(6,18). Please dont provide the distance formula as hint.
  1. no

    A

    yes

    B

Question 3

Identify if quadrilateral $A'B'C'D'$ABCD is a dilation of quadrilateral $ABCD$ABCD.

Loading Graph...

A coordinate plane is marked from -10 to 10 on both $x$x- and $y$y-axes. Two quadrilaterals are shown on the coordinate plane. Quadrilateral $A'B'C'D'$ABCD is smaller and has vertices $A'$A $\left(-4,2\right)$(4,2), $B'$B $\left(5,2\right)$(5,2), $C'$C $\left(5,-3\right)$(5,3), and $D'$D $\left(-4,-3\right)$(4,3). Quadrilateral $ABCD$ABCD is larger and has vertices $A$A $\left(-9,4\right)$(9,4), $B$B $\left(10,4\right)$(10,4), $C$C $\left(10,-6\right)$(10,6), and $D$D $\left(-9,-6\right)$(9,6).
  1. yes

    A

    no

    B

Question 4

Dilate the figure by a factor of $\frac{1}{2}$12, using the origin as the center of dilation.

  1. Loading Graph...

 

Outcomes

0580C3.1

Demonstrate familiarity with Cartesian coordinates in two dimensions.

0580E3.1

Demonstrate familiarity with Cartesian coordinates in two dimensions.

0580C7.2

Reflect simple plane figures in horizontal or vertical lines. Rotate simple plane figures about the origin, vertices or midpoints of edges of the figures, through multiples of 90°. Construct given translations and enlargements of simple plane figures. Recognise and describe reflections, rotations, translations and enlargements.

0580E7.2

Reflect simple plane figures. Rotate simple plane figures through multiples of 90°. Construct given translations and enlargements of simple plane figures. Recognise and describe reflections, rotations, translations and enlargements.

What is Mathspace

About Mathspace