topic badge
iGCSE (2021 Edition)

8.03 Negative indices

Worksheet
Negative indices
1

Consider the following expressions:

i

Identify the base.

ii

Identify the power.

a
10^{ - 7 }
b
2^{ - 4 }
c
13^{-10}
d
\left(-5\right)^{-8}
2

Complete the following tables:

a
2^{5}2^{4}2^{3}2^{2}2^{1}2^{0}2^{-1}
3216
b
\quad10^{5}\quad10^{4}\enspace10^{3}10^{2}10^{1}10^{0}10^{-1}
100\,00010\,000
c
3^{3}3^{2}3^{1}3^{0}3^{-1}3^{-2}3^{-3}
279
3

Express the following expressions with a positive index:

a
6^{ - 10 }
b
73^{ - 14 }
c
\left( - 9 \right)^{ - 7 }
d
9^{ - 1 }
e
17^{ - 6 }
f
55^{ - 1 }
g
\left( - 12 \right)^{ - 8 }
h
-45^{ - 5 }
i
-8^{ - 11 }
j
\left(-20\right)^{-3}
k
7^{-6}
l
\left(-5\right)^{-1}
4

Express the following expressions with a negative index:

a
\dfrac{1}{3}
b
\dfrac{1}{37}
c
\dfrac{1}{5}
d
\dfrac{1}{4^{7}}
e
\dfrac{1}{-15^{3}}
f
\dfrac{1}{10^{5}}
g
\dfrac{1}{\left(-24\right)^{10}}
h
\dfrac{1}{25^{3}}
i
\dfrac{1}{13^{11}}
j
\dfrac{1}{7^{8}}
k
\dfrac{1}{16^{12}}
l
\dfrac{1}{\left(-45\right)^{7}}
5

Complete the following statements:

a
\dfrac{1}{3^{2}} = 3^{⬚}
b
\dfrac{1}{6^{5}} = 6^{⬚}
c
\dfrac{1}{27} = 3^{⬚}
d
\dfrac{1}{5^{3}} = 5^{⬚}
e
\dfrac{1}{7^{11}} = 7^{⬚}
f
\dfrac{1}{64} = 4^{⬚}
g
\dfrac{1}{-9^{4}} = -9^{⬚}
h
\dfrac{1}{-32} = -2^{⬚}
6

Simplify the following expressions:

a
5^{11} \div 5^{ - 3 }
b
7^{ - 7 } \div 7^{5}
c
7^{ - 3 } \times 7^{ - 4 }
d
5^{ - 4 } \div 5^{ - 9 }
e
9^{0} \times 9^{ - 12 }
f
5^{13}\div 5^{-9}
g
10^{2} \div 10^{3}
h
100^{25} \div 100^{26}
i
\dfrac{2^{3}}{2^{5}}
j
\dfrac{\left(5^{2}\right)^{9} \times 5^{6}}{5^{40}}
k
\dfrac{\left(19^{2}\right)^{3}}{19^{ - 3 } \times 19^{ - 9 }}
l
\dfrac{-\left(8^{5}\right)^{2}}{8^{ - 2 } \times 8^{ - 12 }}
7

Evaluate:

a
4 \times 3^{ - 2 } + 8^{0}
b
6 \div 2^{ - 1 } + 4
c
\left(2+3^{-2}\right)\times 2^{-1}
d
\left(\dfrac{2}{3}\right)^{-3}\div 6^{-1}
8

Answer the following questions:

a

What is 0^4 equal to?

b

Explain why 0^{-4} is undefined.

9

Evaluate the following expressions:

a
6^{7} \times 6^{ - 7 }
b
4^{8} \times 4^{ - 6 }
c
3^{ - 8 } \times 3^{11}
d
5^{5} \times 5^{ - 7 }
e
4^{-4} \times 2^{-4}
f
12^{13} \div 12^{7} \div 12^{8}
g
5^{-2} \times 3^{-2}
h
\left(-4\right)^{3} \times \left(-4\right)^{-7}
i
7^{12} \div 7^{-7} \div 7^{17}
j
\dfrac{3^{ - 9 } \times 3^{ - 7 }}{3^{ - 14 }}
k
\dfrac{5^{7}\times 5^{-8}}{5^{-4}}
l
\dfrac{\left(-7\right)^{ - 11 } \times \left(-7\right)^{ - 4 }}{\left(-7\right)^{ - 14 }}
Sign up to access Worksheet
Get full access to our content with a Mathspace account

Outcomes

0580C1.7A

Understand the meaning of indices (fractional, negative and zero) and use the rules of indices.

0580E1.7A

Understand the meaning of indices (fractional, negative and zero) and use the rules of indices.

0580C2.4

Use and interpret positive, negative and zero indices. Use the rules of indices.

0580E2.4A

Use and interpret positive, negative and zero indices. Use the rules of indices.

What is Mathspace

About Mathspace