topic badge
iGCSE (2021 Edition)

8.02 Index laws

Worksheet
Index laws
1

Write the following expressions in simplest index form:

a
2^{12} \times 2^{9}
b
2^{8} \times 11^{8}
c
11^{12} \div 11^{8}
d
21^{5} \div 3^{5}
e
\left(5^{12}\right)^{4}
f
15^{17} \div 15^{8} \div 15^{5}
g
\left(23^{8}\right)^{9} \times 23^{7}
h
\dfrac{\left(17^{5}\right)^{8}}{17^{32}}
i
\dfrac{19^{9} \times 19^{4}}{19^{8}}
j
\dfrac{12^{6}}{12^{4}} \times 12^{5}
k
\dfrac{\left(13^{5}\right)^{2} \times 13^{3}}{13^{5}}
l
\dfrac{\left(15^{9}\right)^{5} \times 15^{7}}{15^{25}}
2

Complete the following statements:

a
11^{11} \times 11^{⬚} = 11^{19}
b
5^{11} \times \left(⬚\right)^{11} = 35^{11}
c
97^{⬚} \div 97^{22} = 97^{12}
d
55^{6} \div \left(⬚\right)^{6} = 11^{6}
e
\left(11^{4}\right)^{⬚} = 11^{12}
f
7^{8} \times 7^{⬚} = 7^{14}
g
2^{10} \times \left(⬚\right)^{10} = 10^{10}
h
19^{⬚} \div 19^{18} = 19^{20}
i
60^{4} \div \left(⬚\right)^{4} = 12^{4}
j
\left(13^{8}\right)^{⬚} = 13^{16}
3

Evaluate the following expressions:

a
6^{5} \times 6^{3}
b
7^{3} \times 3^{3}
c
4^{8} \div 4^{3}
d
\left(5^{4}\right)^{2}
e
35^{5} \div 5^{5}
f
2^{4} \times 4^{4}
g
11^{18} \div 11^{9} \div 11^{7}
h
\left(3^{3}\right)^{2}
i
\dfrac{6^{5} \times 6^{9}}{6^{12}}
j
7^{27} \div 7^{30} \div 7^{3}
k
\dfrac{12^{10} \times 12^{4}}{12^{11}}
l
\dfrac{\left(6^{8}\right)^{6}}{6^{46}}
Negative bases
4

Write the following expressions in simplest index form:

a
\left( - 11 \right)^{10} \times \left( - 11 \right)^{3}
b
\left( - 7 \right)^{8} \times 3^{8}
c
\left(-5 \right)^{2} \times 3^{2}
d
\left( - 3 \right)^{12} \div \left( - 3 \right)^{5}
e
\left( - 12 \right)^{20} \div \left( - 12 \right)^{19}
f
\left( - 30 \right)^{50} \div \left( - 30 \right)^{47}
g
\left( - 48 \right)^{3} \div \left(-6 \right)^{3}
h
\left( - 33 \right)^{11} \div \left( - 3 \right)^{11}
i
\left( - 35 \right)^{5} \div 5^{5}
j
\left( - 42 \right)^{2} \div 7^{2}
5

Complete the following statements:

a
11^{3} \times \left(⬚\right)^{3} = \left( - 77 \right)^{3}
b
\left( - 5 \right)^{11} \times \left(⬚\right)^{11} = 15^{11}
c
\left( - 5 \right)^{⬚} \div \left( - 5 \right)^{31} = \left( - 5 \right)^{19}
d
\left( - 14 \right)^{13} \div \left(⬚\right)^{13} = \left( - 7 \right)^{13}
e
\left( - 3 \right)^{⬚} \div \left( - 3 \right)^{39} = \left( - 3 \right)^{10}
f
\left( - 5 \right)^{4} \times \left(⬚\right)^{4} = \left( - 60 \right)^{4}
g
\left( - 3 \right)^{7} \times \left(⬚\right)^{7} = \left( 6 \right)^{7}
h
\left( {⬚} \right)^3 \div \left( - 3 \right)^{3} = \left( 7 \right)^{3}
i
\left(-33\right)^{3} \div \left( ⬚ \right)^{3} = -11^{3}
j
\left(⬚\right)^{7} \div \left( - 5 \right)^{7} = 11^{7}
6

Evaluate the following expressions:

a
\left( - 4 \right)^{11} \div \left( - 4 \right)^{7}
b
\left( - 2 \right)^{3} \times \left( - 2 \right)^{3}
c
\left( - 3 \right)^{3} \times \left( - 3 \right)^{2}
d
4^{3} \times \left( - 5 \right)^{3}
e
\left( - 3 \right)^{8} \div \left( - 3 \right)^{5}
f
15^{5} \div \left( - 3 \right)^{5}
g
2^3\times \left(-3\right)^3
h
\left(-14\right)^{11}\div 2^{11}
i
\left (-7\right)^{2} \times 5^{2}
j
\left(-9\right)^{4} \times \left(-3\right)^{4}
k
\left(-100\right)^{6} \div 50^{6}
l
60^{3} \div \left(-3\right)^{3}
Fractional bases
7

Write the following in simplest index form:

a
\left(\dfrac{1}{3}\right)^{4}
b
\left(\dfrac{3}{8}\right)^{3}
c
\left(\dfrac{4}{16}\right)^{8}
d
\left(\dfrac{15}{6}\right)^{2}
e
\left(\dfrac{10}{33}\right)^{5}
f
\left(\dfrac{2}{35}\right)^{6}
g
\left(\dfrac{5}{18}\right)^{3}
h
\left(\dfrac{29}{41}\right)^{7}
i
\left(\dfrac{11}{13}\right)^{9}
j
\left(\dfrac{20}{3}\right)^{2}
k
\left(\dfrac{17}{4}\right)^4
l
\left(\dfrac{31}{50}\right)^5
8

Complete the following statements:

a
\dfrac{1}{27} = \left(\dfrac{1}{3}\right)^{⬚}
b
\dfrac{64}{27} = \left(\dfrac{4}{3}\right)^{⬚}
c
\dfrac{27}{8} = \left(\dfrac{3}{⬚}\right)^{3}
d
\dfrac{⬚}{16} = \left(\dfrac{1}{4}\right)^{2}
e
\dfrac{27}{8} = \left(\dfrac{3}{2}\right)^{⬚}
f
\dfrac{⬚}{625}=\left(\dfrac{2}{5}\right)^{4}
g
\dfrac{81}{100} = \left(\dfrac{⬚}{10}\right)^{2}
h
\dfrac{256}{⬚} = \left(\dfrac{4}{5}\right)^{4}
i
\dfrac{25}{9} = \left(\dfrac{5}{3}\right)^{⬚}
j
\dfrac{⬚}{144} = \left(\dfrac{11}{12}\right)^{2}
k
\dfrac{125}{27} = \left(\dfrac{⬚}{3}\right)^3
l
\dfrac{32}{729} = \left(\dfrac{2}{3}\right)^{⬚}
9

Evaluate the following expressions in fully simplified fraction:

a
\left(\dfrac{1}{3}\right)^{2}
b
\left(\dfrac{3}{5}\right)^{3}
c
\left(\dfrac{1}{2}\right)^{5}
d
\left(\dfrac{7}{11}\right)^{2}
e
\left(\dfrac{3}{8}\right)^{3}
f
\left(\dfrac{12}{13}\right)^2
g
\left(\dfrac{5}{9}\right)^{3}
h
\left(\dfrac{2}{3}\right)^{4}
i
\left (\dfrac{4}{5}\right)^{6}
j
\left(\dfrac{2}{5}\right)^{3}
k
\left(\dfrac{5}{7}\right)^{2}
l
\left(\dfrac{10}{14}\right)^3
10

State whether the following fractions are equal to \left(\dfrac{1}{2}\right)^{3} :

a
\dfrac{3}{6}
b
\dfrac{1}{2^{3}}
c
\dfrac{3}{2^{3}}
d
\dfrac{1}{8}
Sign up to access Worksheet
Get full access to our content with a Mathspace account

Outcomes

0580C1.7A

Understand the meaning of indices (fractional, negative and zero) and use the rules of indices.

0580E1.7A

Understand the meaning of indices (fractional, negative and zero) and use the rules of indices.

0580C2.4

Use and interpret positive, negative and zero indices. Use the rules of indices.

0580E2.4A

Use and interpret positive, negative and zero indices. Use the rules of indices.

What is Mathspace

About Mathspace