The dot (or scalar) product is a scalar quantity representing the result of scaling one vector by another. Importantly, when the dot product is calculated, it only scales those components of the vectors that are in the same direction. It has many applications in physics and engineering for calculating scalar quantities such as energy that result from vector quantities such as force and displacement.
For example, consider the two vectors $\mathbf{a}=\left(4,0\right)$a=(4,0) and $\mathbf{b}=\left(6,0\right)$b=(6,0):
If we want to find the result of scaling one vector by the other (find the dot or scalar product) we look at the components of the vectors in the same direction, multiply and sum them together. That is:
In the $x$x direction we have $4\times6=24$4×6=24. In the In the $y$y direction we have $0\times0=0$0×0=0. Therefore the dot product written $\mathbf{a}\cdot\mathbf{b}$a·b is:
$\mathbf{a}\cdot\mathbf{b}$a·b | $=$= | $4\times6+0\times0$4×6+0×0 |
$\mathbf{a}\cdot\mathbf{b}$a·b | $=$= | $24$24 |
Note that the scaling is only applied between equivalent direction components of the two vectors.
Consider the two vectors in different directions $\mathbf{u}=\left(2,4\right)$u=(2,4) and $\mathbf{v}=\left(3,0\right)$v=(3,0):
The dot product $\mathbf{u}\cdot\mathbf{v}$u·v is:
$\mathbf{u}\cdot\mathbf{v}$u·v | $=$= | $2\times3+4\times0$2×3+4×0 |
$\mathbf{u}\cdot\mathbf{v}$u·v | $=$= | $6$6 |
Let's now consider two perpendicular vectors $\mathbf{u}=\left(4,0\right)$u=(4,0) and $\mathbf{v}=\left(0,3\right)$v=(0,3). intuitively we may be able to see that these vectors have zero scaling effect on each other as they don't have any common direction non-zero components.
The dot product $\mathbf{c}\cdot\mathbf{d}$c·d is:
$\mathbf{u}\cdot\mathbf{v}$u·v | $=$= | $4\times0+0\times3$4×0+0×3 |
$\mathbf{u}\cdot\mathbf{v}$u·v | $=$= | $0$0 |
The dot product can be defined as follows:
The dot (or scalar) product of two vectors $\mathbf{a}=\left(x_1,y_1\right)=x_1\mathbf{i}+y_1\mathbf{j}$a=(x1,y1)=x1i+y1j and $\mathbf{b}=\left(x_2,y_2\right)=x_2\mathbf{i}+y_2\mathbf{j}$b=(x2,y2)=x2i+y2j is:
$\mathbf{a}\cdot\mathbf{b}$a·b | $=$= | $x_1x_2+y_1y_2$x1x2+y1y2 |
Find the dot product of $\vec{u}$→u$=$=$\left(6,5\right)$(6,5) and $\vec{v}$→v$=$=$\left(7,-2\right)$(7,−2).
Take the vector $\mathbf{u}=a\mathbf{i}+b\mathbf{j}$u=ai+bj. Taking the dot product of $\mathbf{u}$u with itself gives:
$\mathbf{u}\cdot\mathbf{u}$u·u | $=$= | $a^2+b^2$a2+b2 |
But $a^2+b^2=\left|\mathbf{u}\right|^2$a2+b2=|u|2, therefore:
$\mathbf{u}\cdot\mathbf{u}$u·u | $=$= | $\left|\mathbf{u}\right|^2$|u|2 |
For a vector $\mathbf{u}=a\mathbf{i}+b\mathbf{j}$u=ai+bj:
$\mathbf{u}\cdot\mathbf{u}$u·u | $=$= | $\left|\mathbf{u}\right|^2$|u|2 |
Consider two vectors $\mathbf{a}=\left(a_1,a_2\right)$a=(a1,a2) and $\mathbf{b}=\left(b_1,b_2\right)$b=(b1,b2) shown below. We will call the angle between the two vectors $\theta$θ and have marked in the difference in the two vectors $\mathbf{b}-\mathbf{a}$b−a.
By the cosine rule, we have:
$\left|\mathbf{b-a}\right|^2$|b−a|2 | $=$= | $\left|\mathbf{a}\right|^2+\left|\mathbf{b}\right|^2-2\left|\mathbf{a}\right|\left|\mathbf{b}\right|\cos\theta$|a|2+|b|2−2|a||b|cosθ |
The squared length of vector $|\mathbf{b-a}|$|b−a| is $(b_1-a_1)^2+(b_2-a_2)^2$(b1−a1)2+(b2−a2)2. So, on replacing the magnitudes by their values calculated from the coordinates, we have:
$(b_1-a_1)^2+(b_2-a_2)^2$(b1−a1)2+(b2−a2)2 | $=$= | $a_1^2+a_2^2+b_1^2+b_2^2-2\sqrt{a_1^2+a_2^2}\sqrt{b_1^2+b_2^2}\cos\theta$a21+a22+b21+b22−2√a21+a22√b21+b22cosθ |
When we expand the brackets on the left and collect like terms, we find:
$b_1a_1+b_2a_2$b1a1+b2a2 | $=$= | $\sqrt{a_1^2+a_2^2}\sqrt{b_1^2+b_2^2}\cos\theta$√a21+a22√b21+b22cosθ |
Therefore:
$\cos\theta$cosθ | $=$= | $\frac{b_1a_1+b_2a_2}{\sqrt{a_1^2+a_2^2}\sqrt{b_1^2+b_2^2}}$b1a1+b2a2√a21+a22√b21+b22 |
But $$, $\sqrt{a_1^2+a_2^2}=\left|\mathbf{a}\right|$√a21+a22=|a| and $\sqrt{b_1^2+b_2^2}=\left|\mathbf{b}\right|$√b21+b22=|b| therefore:
$\cos\theta$cosθ | $=$= | $\frac{\mathbf{a}\cdot\mathbf{b}}{\left|\mathbf{a}\right|\left|\mathbf{b}\right|}$a·b|a||b| |
For two vectors $\mathbf{a}$a and $\mathbf{b}$b with an angle $\theta$θ between them:
$\cos\theta$cosθ | $=$= | $\frac{\mathbf{a}\cdot\mathbf{b}}{\left|\mathbf{a}\right|\left|\mathbf{b}\right|}$a·b|a||b| |
Or:
$\mathbf{a}\cdot\mathbf{b}$a·b | $=$= | $\left|\mathbf{a}\right|\left|\mathbf{b}\right|\cos\theta$|a||b|cosθ |
Two vectors in coordinate form are $\mathbf{u}=(3,-1)$u=(3,−1) and $\mathbf{v}=(-5,2)$v=(−5,2). Find the angle $\theta$θ between them.
Think: We need the magnitudes $|\mathbf{u}|$|u| and $|\mathbf{v}|$|v|. Then, we need the dot product $\mathbf{u}\cdot\mathbf{v}$u·v.
Do: The magnitudes $|\mathbf{u}|$|u| is given by:
$\left|\mathbf{u}\right|$|u| | $=$= | $\sqrt{9+1}$√9+1 |
$\left|\mathbf{u}\right|$|u| | $=$= | $\sqrt{10}$√10 |
Do: The magnitudes $|\mathbf{v}|$|v| is given by:
$\left|\mathbf{v}\right|$|v| | $=$= | $\sqrt{25+4}$√25+4 |
$\left|\mathbf{u}\right|$|u| | $=$= | $\sqrt{29}$√29 |
The dot product $\mathbf{u}\cdot\mathbf{v}$u·v is given by:
$\left|\mathbf{v}\right|$|v| | $=$= | $3\times(-5)+(-1)\times2$3×(−5)+(−1)×2 |
$\left|\mathbf{v}\right|$|v| | $=$= | $-17$−17 |
Therefore:
$\cos\theta$cosθ | $=$= | $\frac{-17}{\sqrt{10}\sqrt{29}}$−17√10√29 |
$\theta$θ | $=$= | $\cos^{-1}\frac{-17}{\sqrt{10}\sqrt{29}}$cos−1−17√10√29 |
$\theta$θ | $\approx$≈ | $177^\circ$177° |
The vectors are pointing in almost opposite directions.
Consider the vectors $A=\left(-7,2\right)$A=(−7,2) and $B=\left(7,8\right)$B=(7,8).
Find the exact magnitude of vector $A$A:
Find the exact magnitude of vector $B$B:
Find the dot product of $A$A and $B$B:
Use the results of your previous calculations to determine the angle $\theta$θ between vectors $A$A and $B$B. Give $\theta$θ in degrees, correct to one decimal place.
Consider the vectors $U=2i+j$U=2i+j and $V=3i-6j$V=3i−6j.
Find the exact magnitude of vector $U$U:
Find the exact magnitude of vector $V$V:
Find the dot product of $U$U and $V$V:
Use the results of your previous calculations to determine the angle $\theta$θ between vectors $U$U and $V$V. Give $\theta$θ in degrees, correct to two decimal places.
Given two perpendicular vectors $\mathbf{a}$a and $\mathbf{b}$b we can say that:
$\mathbf{a}\cdot\mathbf{b}$a·b | $=$= | $\left|\mathbf{a}\right|\left|\mathbf{b}\right|\cos90$|a||b|cos90 |
$\mathbf{a}\cdot\mathbf{b}$a·b | $=$= | $\left|\mathbf{a}\right|\left|\mathbf{b}\right|\times0$|a||b|×0 |
$\mathbf{a}\cdot\mathbf{b}$a·b | $=$= | $0$0 |
Therefore we can say that:
Two vectors $\mathbf{a}$a and $\mathbf{b}$b are perpendicular if $\mathbf{a}\cdot\mathbf{b}=0$a·b=0
Given two parallel vectors $\mathbf{a}$a and $\mathbf{b}$b we can say:
If are in the same direction:
$\mathbf{a}\cdot\mathbf{b}$a·b | $=$= | $\left|\mathbf{a}\right|\left|\mathbf{b}\right|\cos0$|a||b|cos0 |
$\mathbf{a}\cdot\mathbf{b}$a·b | $=$= | $\left|\mathbf{a}\right|\left|\mathbf{b}\right|\times1$|a||b|×1 |
$\mathbf{a}\cdot\mathbf{b}$a·b | $=$= | $\left|\mathbf{a}\right|\left|\mathbf{b}\right|$|a||b| |
If are in the opposite direction:
$\mathbf{a}\cdot\mathbf{b}$a·b | $=$= | $\left|\mathbf{a}\right|\left|\mathbf{b}\right|\cos180$|a||b|cos180 |
$\mathbf{a}\cdot\mathbf{b}$a·b | $=$= | $\left|\mathbf{a}\right|\left|\mathbf{b}\right|\times-1$|a||b|×−1 |
$\mathbf{a}\cdot\mathbf{b}$a·b | $=$= | $-\left|\mathbf{a}\right|\left|\mathbf{b}\right|$−|a||b| |
Therefore we can say that:
Two vectors $\mathbf{a}$a and $\mathbf{b}$b are parallel if:
$\mathbf{a}\cdot\mathbf{b}$a·b | $=$= | $\left|\mathbf{a}\right|\left|\mathbf{b}\right|$|a||b| for vectors in the same direction |
$\mathbf{a}\cdot\mathbf{b}$a·b | $=$= | $-\left|\mathbf{a}\right|\left|\mathbf{b}\right|$−|a||b| for vectors in opposite directions |
Are the vectors $a=6i+4j$a=6i+4j and $b=2i-3j$b=2i−3j perpendicular, parallel or neither?
Perpendicular
Parallel
Neither
The vectors $Ai+3j$Ai+3j and $-10i-15j-Bk$−10i−15j−Bk are collinear.
Find $A$A.
Find $B$B.