topic badge
Standard Level

3.04 Two points in 3D

Lesson

To find the distance between pointsΒ  $(x_1,y_1)$(x1​,y1​) and $(x_2,y_2)$(x2​,y2​)Β in two dimensions we use the formula:Β 

$d$d $=$= $\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$√(x2β€‹βˆ’x1​)2+(y2β€‹βˆ’y1​)2

Β 

In three dimensions, we need to add a third variable,Β  $z$z. This adds a third dimension to the Cartesian plane as shown:Β 

3 dimensional Cartesian plane

A point on the 3D plane has coordinates:Β $(x,y,z)$(x,y,z).

Remember!

So to find the distance between $(x_1,y_1,z_1)$(x1​,y1​,z1​) and $(x_2,y_2,z_2)$(x2​,y2​,z2​) on the 3D plane we would use the following formula:

$d$d $=$= $\sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}$√(x2β€‹βˆ’x1​)2+(y2β€‹βˆ’y1​)2+(z2β€‹βˆ’z1​)2
Β 

Worked examples

Example 1

Find the distance between the pointsΒ $(3,0,-2)$(3,0,βˆ’2) and $(4,5,-6)$(4,5,βˆ’6).

Think: We need to substitute these coordinates into the above formula. You can choose which point you let beΒ  $(x_1,y_1,z_1)$(x1​,y1​,z1​) and $(x_2,y_2,z_2)$(x2​,y2​,z2​). In the working, we have letΒ  $(x_1,y_1,z_1)=(3,0,-2)$(x1​,y1​,z1​)=(3,0,βˆ’2), and $(x_2,y_2,z_2)=(4,5,-6).$(x2​,y2​,z2​)=(4,5,βˆ’6).

Do:

$d$d $=$= $\sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}$√(x2β€‹βˆ’x1​)2+(y2β€‹βˆ’y1​)2+(z2β€‹βˆ’z1​)2
Β  $=$= $\sqrt{(4-3)^2+(5-0)^2+(-6-(-2))^2}$√(4βˆ’3)2+(5βˆ’0)2+(βˆ’6βˆ’(βˆ’2))2
Β  $=$= $\sqrt{1^2+5^2+(-4)^2}$√12+52+(βˆ’4)2
  $=$= $\sqrt{1+25+16}$√1+25+16
  $=$= $\sqrt{42}$√42
Β  $\approx$β‰ˆ $6.48$6.48

Β 

So the distance between the two points is approximatelyΒ  $6.48$6.48 units.

Example 2

Find the exact distance between the two points shown in the 3D Cartesian plane:

Β 

Think: First we should letΒ  $(x_1,y_1,z_1)=(2,-5,3)$(x1​,y1​,z1​)=(2,βˆ’5,3), and $(x_2,y_2,z_2)=(3,3,-2).$(x2​,y2​,z2​)=(3,3,βˆ’2).

Do:

Β 

$d$d $=$= $\sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}$√(x2β€‹βˆ’x1​)2+(y2β€‹βˆ’y1​)2+(z2β€‹βˆ’z1​)2
Β  $=$= $\sqrt{(3-2)^2+(3-(-5))^2+(-2-3)^2}$√(3βˆ’2)2+(3βˆ’(βˆ’5))2+(βˆ’2βˆ’3)2
Β  $=$= $\sqrt{1^2+8^2+(-5)^2}$√12+82+(βˆ’5)2
  $=$= $\sqrt{1+25+16}$√1+25+16
  $=$= $\sqrt{90}$√90
  $=$= $3\sqrt{10}$3√10

Β 

So the exact distance between the two points is  $3\sqrt{10}$3√10 units.

Midpoint of two points in 3D

Β 

We can also find the midpoint of twoΒ points in the 3D plane by using theΒ  $z$z-coordinate.

Remember!

So to find the midpoint between $(x_1,y_1,z_1)$(x1​,y1​,z1​) and $(x_2,y_2,z_2)$(x2​,y2​,z2​) on the 3D plane we would use the following formula:

Midpoint $=$= $\left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2},\frac{z_1+z_2}{2}\right)$(x1​+x2​2​,y1​+y2​2​,z1​+z2​2​)

Β 

Example 3

Find the coordinates of the midpoint between the points shown in the diagram:

Β 

Β 

Think: First we should letΒ  $(x_1,y_1,z_1)=(1,6,0)$(x1​,y1​,z1​)=(1,6,0), and $(x_2,y_2,z_2)=(-2,5,4).$(x2​,y2​,z2​)=(βˆ’2,5,4).

Do:

Midpoint $=$= $\left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2},\frac{z_1+z_2}{2}\right)$(x1​+x2​2​,y1​+y2​2​,z1​+z2​2​)
Β  $=$= $\left(\frac{1+(-2)}{2},\frac{6+5}{2},\frac{0+4}{2}\right)$(1+(βˆ’2)2​,6+52​,0+42​)
Β  $=$= $\left(\frac{-1}{2},\frac{11}{2},2\right)$(βˆ’12​,112​,2)

Β 

Β 

What is Mathspace

About Mathspace