To find the distance between pointsΒ $(x_1,y_1)$(x1β,y1β) and $(x_2,y_2)$(x2β,y2β)Β in two dimensions we use the formula:Β
$d$d | $=$= | $\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$β(x2ββx1β)2+(y2ββy1β)2 |
Β
In three dimensions, we need to add a third variable,Β $z$z. This adds a third dimension to the Cartesian plane as shown:Β
3 dimensional Cartesian plane
A point on the 3D plane has coordinates:Β $(x,y,z)$(x,y,z).
So to find the distance between $(x_1,y_1,z_1)$(x1β,y1β,z1β) and $(x_2,y_2,z_2)$(x2β,y2β,z2β) on the 3D plane we would use the following formula:
$d$d | $=$= | $\sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}$β(x2ββx1β)2+(y2ββy1β)2+(z2ββz1β)2 |
Find the distance between the pointsΒ $(3,0,-2)$(3,0,β2) and $(4,5,-6)$(4,5,β6).
Think: We need to substitute these coordinates into the above formula. You can choose which point you let beΒ $(x_1,y_1,z_1)$(x1β,y1β,z1β) and $(x_2,y_2,z_2)$(x2β,y2β,z2β). In the working, we have letΒ $(x_1,y_1,z_1)=(3,0,-2)$(x1β,y1β,z1β)=(3,0,β2), and $(x_2,y_2,z_2)=(4,5,-6).$(x2β,y2β,z2β)=(4,5,β6).
Do:
$d$d | $=$= | $\sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}$β(x2ββx1β)2+(y2ββy1β)2+(z2ββz1β)2 |
Β | $=$= | $\sqrt{(4-3)^2+(5-0)^2+(-6-(-2))^2}$β(4β3)2+(5β0)2+(β6β(β2))2 |
Β | $=$= | $\sqrt{1^2+5^2+(-4)^2}$β12+52+(β4)2 |
Β | $=$= | $\sqrt{1+25+16}$β1+25+16 |
Β | $=$= | $\sqrt{42}$β42 |
Β | $\approx$β | $6.48$6.48 |
Β
So the distance between the two points is approximatelyΒ $6.48$6.48 units.
Find the exact distance between the two points shown in the 3D Cartesian plane:
Think: First we should letΒ $(x_1,y_1,z_1)=(2,-5,3)$(x1β,y1β,z1β)=(2,β5,3), and $(x_2,y_2,z_2)=(3,3,-2).$(x2β,y2β,z2β)=(3,3,β2).
Do:
Β
$d$d | $=$= | $\sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}$β(x2ββx1β)2+(y2ββy1β)2+(z2ββz1β)2 |
Β | $=$= | $\sqrt{(3-2)^2+(3-(-5))^2+(-2-3)^2}$β(3β2)2+(3β(β5))2+(β2β3)2 |
Β | $=$= | $\sqrt{1^2+8^2+(-5)^2}$β12+82+(β5)2 |
Β | $=$= | $\sqrt{1+25+16}$β1+25+16 |
Β | $=$= | $\sqrt{90}$β90 |
Β | $=$= | $3\sqrt{10}$3β10 |
Β
So the exact distance between the two points isΒ $3\sqrt{10}$3β10 units.
Β
We can also find the midpoint of twoΒ points in the 3D plane by using theΒ $z$z-coordinate.
So to find the midpoint between $(x_1,y_1,z_1)$(x1β,y1β,z1β) and $(x_2,y_2,z_2)$(x2β,y2β,z2β) on the 3D plane we would use the following formula:
Midpoint | $=$= | $\left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2},\frac{z_1+z_2}{2}\right)$(x1β+x2β2β,y1β+y2β2β,z1β+z2β2β) |
Find the coordinates of the midpoint between the points shown in the diagram:
Β
Β
Think: First we should letΒ $(x_1,y_1,z_1)=(1,6,0)$(x1β,y1β,z1β)=(1,6,0), and $(x_2,y_2,z_2)=(-2,5,4).$(x2β,y2β,z2β)=(β2,5,4).
Do:
Midpoint | $=$= | $\left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2},\frac{z_1+z_2}{2}\right)$(x1β+x2β2β,y1β+y2β2β,z1β+z2β2β) |
Β | $=$= | $\left(\frac{1+(-2)}{2},\frac{6+5}{2},\frac{0+4}{2}\right)$(1+(β2)2β,6+52β,0+42β) |
Β | $=$= | $\left(\frac{-1}{2},\frac{11}{2},2\right)$(β12β,112β,2) |