topic badge

3.02 Factoring polynomials

Lesson

Concept summary

Factoring polynomials is a process of expressing polynomials from a sum or difference of terms to a product of its factors. In other words, it is the inverse process of multiplying polynomials.

Factoring using Greatest Common Factor (GCF)

A greatest common factor from each term of a polynomial is factored out

ax+ay+\ldots=a(x+y+\ldots)

Factoring by grouping

A method for factoring an expression containing at least four terms, by grouping the terms in pairs and taking out common factors

ax + ay + bx + by = a\left(x + y\right) + b\left(x + y\right) = \left(x+y\right)\left(a+b\right)

Factoring quadratic trinomials where a = 1

A trinomial that can be expressed as the product of two binomials

ax^{2} + bx + c= \left(x + p\right)\left(x + q\right) where pq=c and p+q=b

Factoring quadratic trinomials where a \gt 1

A trinomial that can be expressed as the product of two binomials

ax^{2} + bx + c= \left(mx + p\right)\left(nx + q\right) where mn=a,pq=c and np+mq=b

We have a few identities that can help us.

Perfect square trinomials

A trinomial that is formed by multiplying a binomial by itself

a^{2} + 2 a b + b^{2} = \left(a + b\right)^{2} \text{ or } a^{2} - 2 a b + b^{2} = \left(a - b\right)^{2}

Difference of two squares

The result of a perfect square being subtracted from another perfect square

a^{2} - b^{2} = \left(a+b\right)\left(a-b\right)

Sum of two cubes

Two perfect cube expressions being added

a^{3} + b^{3} = \left(a+b\right)\left(a^2-ab+b^2\right)

Difference of two cubes

The result of a perfect cube being subtracted from another perfect cube

a^{3} - b^{3} = \left(a-b\right)\left(a^2+ab+b^2\right)

Worked examples

Example 1

Factor 6 x^{4} - 10x^{3} - 24x^{2}.

Approach

First, we find any common factors for all three terms and factor it out. Then, from the simpler trinomial, we find the value of r and s, that multiply to ac and add up to b. After finding r and s, we write the trinomial in the form ax^{2} + rx + sx + c and factor it by grouping.

Solution

The common factors of the three terms is 2x^{2}. We factor out 2x^{2} and get 2x^{2}\left(3 x^{2} - 5x - 12\right).

For 3 x^{2} - 5x - 12, we find two numbers that have a product of ac = \left(3\right)\left(-12\right) = -36 and sum of b = -5.

The factors of -36 include \pm1, \pm2, \pm3,\pm4,\pm6,\pm9,\pm18 and \pm36. Among these factors are 1 and -6, 4 and -9 that add up to -5. We choose r=4 and s=-9.

We write 3 x^{2} - 5x - 12 in the form ax^{2} + rx + sx + c. Substituting the values for r and s, we get

3x^{2} +4x -9 x - 12

Now, we factor the expression by grouping

\displaystyle 3x^{2} +4x -9x -12\displaystyle =\displaystyle (3x^{2} +4x) +(-9x -12)Split based on common factors
\displaystyle =\displaystyle x\left(3x + 4\right) - 3\left(3x + 4\right)Factor out the GCF: x and -3
\displaystyle =\displaystyle \left(x-3\right)\left(3x+4\right)Factor out the common binomial factor

Therefore, 6 x^{4} - 10x^{3} - 24x^{2}=2x^{2}\left(x-3\right)\left(3x+4\right).

Reflection

We can check the answer by multiplying the factored form 2x^{2}\left(x-3\right)\left(3x+4\right).

\displaystyle 2x^{2}\left(x-3\right)\left(3x+4\right)\displaystyle =\displaystyle 2x^{2}\left(x\left(3x+4\right)-3\left(3x+4\right)\right)Distribute 3x + 4
\displaystyle =\displaystyle 2x^{2}\left(3x^{2} +4x -9x - 12\right)Distribute x and -3
\displaystyle =\displaystyle 6 x^{4} + 8x^{3} -18x^{3} - 24x^{2}Distribute 2x^{2}
\displaystyle =\displaystyle 6 x^{4} - 10x^{3} - 24x^{2}Combine like terms

Example 2

Factor 18m^{3}-2mn^2+9m^2n-n^3.

Approach

We arrange the terms first, grouping those with common factor. We factor out the GCF on each pair and the common binomial factor afterwards.

Solution

\displaystyle 18m^{3}-2mn^2+9m^2n-n^3\displaystyle =\displaystyle \left(18m^{3}-2mn^2\right)+\left(9m^2n-n^3\right)Split based on common factors
\displaystyle =\displaystyle 2m\left(9m^{2}-n^{2}\right) + n\left(9m^{2}-n^{2}\right)Factor out the GCF: 2m and n
\displaystyle =\displaystyle \left(2m+n\right)\left(9m^{2}-n^{2}\right)Factor out the common binomial factor

Observe that 9m^{2}-n^{2}=\left(3m\right)^{2}-\left(n\right)^{2}. This means that 9m^{2}-n^{2} is a difference of two squares, so we use the formula in factoring:

\displaystyle a^{2}-b^{2}\displaystyle =\displaystyle (a-b)(a+b)Formula of difference of two squares
\displaystyle \left(3m\right)^{2}-\left(n\right)^{2}\displaystyle =\displaystyle (3m-n)(3m+n)Substitue a=3m and b=n

If we substitute 9m^{2}-n^{2}=(3m+n)(3m-n), we get 18m^{3}-2mn^2+9m^2n-n^3=\left(2m+n\right)(3m-n)(3m+n)

Reflection

  • Alternatively, we can group 8m^{3} \text{ and } 9m^{2}n and -2mn^{2} \text{ and } -n^{3} together and get the same answer.

    \displaystyle 18m^{3}-2mn^2+9m^2n-n^3\displaystyle =\displaystyle \left(18m^{3}+9m^2n \right)+ \left(-2mn^2-n^3\right)Split based on common factors
    \displaystyle =\displaystyle 9m^{2}\left(2m+n\right) + \left(-n^{2}\right)\left(2m+n\right)Factor out the GCF: 9m^2 and -n^2
    \displaystyle =\displaystyle \left(9m^{2} - n^{2}\right)\left(2m + n\right)Factor out the common binomial factor
    \displaystyle =\displaystyle \left(3m +n\right)\left(3m -n\right)\left(2m + n\right)Apply the formula for difference of two squares
  • We can check the answer by multiplying the factored form \left(3m +n\right)\left(3m -n\right)\left(2m + n\right).

    \displaystyle \left(3m +n\right)\left(3m -n\right)\left(2m + n\right)\displaystyle =\displaystyle \left(9m^{2} - n^{2}\right)\left(2m + n\right)Apply the formula for difference of two squares
    \displaystyle =\displaystyle 2m\left(9m^{2} - n^{2}\right)+n\left(9m^{2} - n^{2}\right)Distribute \\9m^{2} - n^{2}
    \displaystyle =\displaystyle 18m^{3}-2mn^2+9m^2n-n^3Simplify

Example 3

Factor 64x^{3}+125y^{3}.

Approach

We check first whether 64x^{3}+125y^{3} is a special product and identify its type.

Solution

Observe that 64x^{3}+125y^{3}=\left(4x\right)^{3}+\left(5y\right)^{3}. This means that 64x^{3}+125y^{3} is a sum of two cubes, so we use the formula in factoring:

\displaystyle a^{3} + b^{3}\displaystyle =\displaystyle \left(a+b\right)\left(a^2-ab+b^2\right)Formula of sum of two cubes
\displaystyle \left(4x\right)^{3}+\left(5y\right)^{3}\displaystyle =\displaystyle \left(4x+5y\right)\left((4x)^{2}+\left(4x\right)\left(5y\right)+\left(5y\right)^{2}\right)Substitute a=4x and b=5y
\displaystyle =\displaystyle \left(4x+5y\right)\left(16x^{2}+20xy+25y^{2}\right)Simplify

Therefore, 64x^{3}+125y^{3}=\left(4x+5y\right)\left(16x^{2}+20xy+25y^{2}\right).

Reflection

We can check the answer by multiplying the factored form \left(4x+5y\right)\left(16x^{2}+20xy+25y^{2}\right).

Observe that \left(4x+5y\right)\left(16x^{2}+20xy+25y^{2}\right)=\left(4x+5y\right)\left((4x)^{2}+\left(4x\right)\left(5y\right)+\left(5y\right)^{2}\right).

Now,

\displaystyle \left(4x+5y\right)\left(16x^{2}+20xy+25y^{2}\right)\displaystyle =\displaystyle \left(4x\right)^{3}+\left(5y\right)^{3}Formula of sum of two cubes
\displaystyle =\displaystyle 64x^{3}+125y^{3}Simplify

Example 4

Factor 27p^{3}-\dfrac{1}{8}.

Approach

We check first whether 27p^{3}-\dfrac{1}{8} is a special product and identify its type.

Solution

Observe that 27p^{3}-\dfrac{1}{8}=\left(3p\right)^{3}-\left(\dfrac{1}{2}\right)^{3}. This means that 27p^{3}-\dfrac{1}{8} is a difference of two cubes, so we use the formula in factoring:

\displaystyle a^{3} - b^{3}\displaystyle =\displaystyle \left(a-b\right)\left(a^2+ab+b^2\right)Formula of difference of two cubes
\displaystyle (3p)^{3}-\left(\dfrac{1}{2}\right)^{3}\displaystyle =\displaystyle \left(3p-\dfrac{1}{2}\right)\left((3p)^{2}+(3p)\left(\dfrac{1}{2}\right)+\left(\dfrac{1}{2}\right)^{2}\right)Substitute a=3p and b=\dfrac{1}{2}
\displaystyle =\displaystyle \left(3p-\dfrac{1}{2}\right)\left(9p^{2}+\dfrac{3}{2}p+\dfrac{1}{4}\right)Simplify

Therefore, 27p^{3}-\dfrac{1}{8}=\left(3p-\dfrac{1}{2}\right)\left(9p^{2}+\dfrac{3}{2}p+\dfrac{1}{4}\right).

Reflection

We can check the answer by multiplying the factored form \left(3p-\dfrac{1}{2}\right)\left(9p^{2}+\dfrac{3}{2}p+\dfrac{1}{4}\right).

Observe that \left(3p-\dfrac{1}{2}\right)\left(9p^{2}+\dfrac{3}{2}p+\dfrac{1}{4}\right)=\left(3p-\dfrac{1}{2}\right)\left((3p)^{2}+(3p)\left(\dfrac{1}{2}\right)+\left(\dfrac{1}{2}\right)^{2}\right).

Now,

\displaystyle \left(3p-\dfrac{1}{2}\right)\left(9p^{2}+\dfrac{3}{2}p+\dfrac{1}{4}\right)\displaystyle =\displaystyle (3p)^{3}-\left(\dfrac{1}{2}\right)^{3}Formula of difference of two cubes
\displaystyle =\displaystyle 27p^{3}-\dfrac{1}{8}Simplify

Outcomes

MA.912.AR.1.8

Rewrite a polynomial expression as a product of polynomials over the real or complex number system.

What is Mathspace

About Mathspace