topic badge
Australia
Year 6

2.01 Addition

Lesson

Are you ready?

Breaking up numbers into parts, often by place value, can help with addition. Do you know how to  partition a number by place value? 

Examples

Example 1

We're going to write 56\,713 in expanded form.

a

Fill in the number expander for 56\,713.

56\,713=⬚ \, \text{ Ten-Thousands }⬚ \, \text{ Thousands }⬚ \, \text{ Hundreds }⬚ \, \text{ Tens }⬚ \, \text{ Units}

Worked Solution
Create a strategy

Use a place value table.

Apply the idea
Ten ThousandsThousandsHundredsTensOnes
56713

56\,713=5 \, \text{ Ten-Thousands }6 \, \text{ Thousands }7 \, \text{ Hundreds }1 \, \text{ Tens }3 \, \text{ Units}

b

56\,713=⬚+⬚+⬚+10+3

Worked Solution
Create a strategy

Use the number expander in part (a).

Apply the idea

5 is in ten thousands, 6 is in thousands, and 7 is in hundreds, so the values are 50\,000, 6000, and 700.

56\,713=50\,000+6000+700+10+3

Idea summary

We can use a place value table to write numbers in expanded form.

Addition by place value

Place value is something we need to know when solving addition, whether working across our page, or using a vertical algorithm. Let's see how it helps us, including regrouping.

Loading video...

Examples

Example 2

Let's find the value of 705 + 205, by partitioning the numbers.

a

Fill in the box with the missing number.

705 = 700 + ⬚

Worked Solution
Create a strategy

Put the numbers in a place value table.

Apply the idea
HundredsTensOnes
705
700

The only place where that the two numbers differ is in the units column. The first number has 5 units where as the second number has 0 units.

So we need to add 5 more to the number 700 to equal 705.

705 = 700 + 5

b

Fill in the box with the missing number.

205 = ⬚ + 5

Worked Solution
Create a strategy

Put the numbers in a place value table.

Apply the idea
HundredsTensOnes
205
5

In the place value table, both 205 and 5 have 5 units but they don't match up in the tens and hundreds columns.

So we need to add 0 tens and 2 hundreds or 200 to 5 to get 205.

205 = 200 + 5

c

Find the value of 705 + 205.

Worked Solution
Create a strategy

Add the partitions of the two numbers.

Apply the idea

In parts (a) and (b), we have the partitions of these two numbers:

705 = 700 + 5 \\ 205 = 200 + 5

We can use these to add the two numbers.

\displaystyle 705 + 205\displaystyle =\displaystyle 700 + 5 + 200 + 5Use the partitions
\displaystyle =\displaystyle 700 + 200 + 5 + 5Group the hundreds and ones
\displaystyle =\displaystyle 900 + 10Add the hundreds and ones
\displaystyle =\displaystyle 910

705 + 205 = 910

Idea summary

To add large numbers, we can first partition the numbers and then add their partitions.

Addition of large numbers

We can use vertical algorithms to work with larger numbers as well, as we do in this video.

Loading video...

Examples

Example 3

Find the value of 19\,292 + 34\,131.

Worked Solution
Create a strategy

Use the standard algorithm method.

Apply the idea

Write it in a vertical algorithm.\begin{array}{c} & & &1 &9 &2 &9 &2 \\ &+ & &3 &4 &1 &3 &1 \\ \hline & \\ \hline \end{array}

Add the units column first.\begin{array}{c} & & &1 &9 &2 &9 &2 \\ &+ & &3 &4 &1 &3 &1 \\ \hline & & & & & & &3\\ \hline \end{array}

In the tens column we get 9+3=12. So we bring down 2 and carry the 1 to the hundreds place.\begin{array}{c} & & &1 &9 &\text{}^ 1 2 &9 &2 \\ &+ & &3 &4 &1 &3 &1 \\ \hline & & & & & &2 &3\\ \hline \end{array}

In the hundreds column we get 1+2+1=4.\begin{array}{c} & & &1 &9 &\text{}^ 1 2 &9 &2 \\ &+ & &3 &4 &1 &3 &1 \\ \hline & & & & &4 &2 &3\\ \hline \end{array}

In the thousands column we get 9 + 4 = 13. So we bring down 3 and carry the 1 to the ten thousands place.\begin{array}{c} & & &\text{}^1 1 &9 &\text{}^ 1 2 &9 &2 \\ &+ & &3 &4 &1 &3 &1 \\ \hline & & & & 3&4 &2 &3\\ \hline \end{array}

For the ten thousands place we get 1+1+3=5.\begin{array}{c} & & &\text{}^1 1 &9 &\text{}^ 1 2 &9 &2 \\ &+ & &3 &4 &1 &3 &1 \\ \hline & & & 5& 3&4 &2 &3\\ \hline \end{array}

So the answer is:19\,292 + 34\,131 = 53\,423

Idea summary

We often call on different methods when we solve addition problems, so remember to use things such as:

  • bridge (build) to 10

  • partitioning numbers

  • number lines

  • place value

  • vertical algorithms

Outcomes

ACMNA123

Select and apply efficient mental and written strategies and appropriate digital technologies to solve problems involving all four operations with whole numbers

ACMNA127

Find a simple fraction of a quantity where the result is a whole number, with and without digital technologies

ACMNA132

Investigate and calculate percentage discounts of 10%, 25% and 50% on sale items, with and without digital technologies

What is Mathspace

About Mathspace