topic badge

4.04 Further anti-differentiation

Worksheet
Functions in the form (ax + b) to a power
1

Find the following indefinite integrals, using c as the constant of integration:

a

\int \left(x - 5\right)^{4} dx

b

\int \dfrac{1}{\left(x + 6\right)^{3}} dx

c

\int 6 \left(x + 2\right)^{2} dx

d

\int \dfrac{4}{\left(x - 5\right)^{3}} dx

e

\int \left( 2 x + 3\right)^{3} dx

f

\int \left( 4 x - 3\right)^{ - 4 } dx

g

\int \dfrac{1}{\left( 2 x - 3\right)^{4}} dx

h

\int \dfrac{1}{\left( 4 x + 3\right)^{2}} dx

i

\int \left( 2 x - 5\right)^{\frac{1}{2}} dx

j

\int \left( 4 x + 5\right)^{ - \frac{1}{2} } dx

k

\int \left( 4 x + 5\right)^{\frac{5}{4}} dx

l

\int \left(1 - x\right)^{6} dx

m

\int 4 \left(5 - x\right)^{3} dx

n

\int \left(4 - 3 x\right)^{6} dx

o

\int 4 \left( 2 x + 5\right)^{3} dx

p

\int 4 \left(2 - 3 x\right)^{3} dx

q

\int \left(4 - 3 x\right)^{ - 5 } dx

r

\int \dfrac{5}{\left(5 - 4 x\right)^{3}} dx

s

\int \sqrt{7 - 4 x} \ dx

t

\int 3 \sqrt{ 2 x + 3} \ dx

u

\int \dfrac{5}{\sqrt{1 - 4 x}} dx

v

\int 16 \sqrt[3]{ 6 x + 5} \ dx

w

\int \left(5 + \left( 4 x + 1\right)^{3}\right) dx

x

\int \dfrac{5}{\sqrt{x - 2}} dx

y

\int \left(\sqrt{x - 2} + \sqrt{x + 3}\right) dx

2

Find the equation of y in terms of x, given that \dfrac{d y}{d x} = 12 \left(2x - 1\right)^{3} and y = 1 when x = 1.

3

Find the equation of the curve that has a gradient function \dfrac{d y}{d x} =5 \left(5x - 6\right)^{2} and the point \left(1,1 \right) lies on the curve.

4

For each of the following gradient functions, find the equation of y:

a
\dfrac{d y}{d x} = \sqrt{ 6 x + 66} and function y passes through the point \left( - 5 , 17\right).
b
\dfrac{dy}{dx} = \left( 4 x - 2\right)^{3} and function y passes through the point \left(2, 79\right).
Functions in the form f'(x).f(x)
5

Consider the function \left(x^{2} - 3\right)^{5}.

a

Calculate \dfrac{d}{dx} \left(x^{2} - 3\right)^{5}.

b

Hence find \int 30 x \left(x^{2} - 3\right)^{4} dx.

6

Consider the function \left( 5 x^{2} + 10 x - 3\right)^{5}.

a

Calculate \dfrac{d}{dx} \left( 5 x^{2} + 10 x - 3\right)^{5}.

b

Find \int 150 \left(x + 1\right) \left( 5 x^{2} + 10 x - 3\right)^{4} dx.

7

Consider the function \left(x^{2} - 3 x + 6\right)^{5}.

a

Calculate \dfrac{d}{dx} \left(x^{2} - 3 x + 6\right)^{5}.

b

Hence find \int \left(3 - 2 x\right) \left(x^{2} - 3 x + 6\right)^{4} dx.

8

Consider the function \sqrt{ 4 x + 11}.

a

Calculate \dfrac{d}{dx} \left(\sqrt{ 4 x + 11}\right)

b

Hence find \int \dfrac{12}{\sqrt{ 4 x + 11}} dx.

9

Consider the function \dfrac{1}{\left(x^{2} + 7\right)^{3}}.

a

Calculate \dfrac{d}{dx} \left(\dfrac{1}{\left(x^{2} + 7\right)^{3}}\right).

b

Hence find \int - \dfrac{24 x}{\left(x^{2} + 7\right)^{4}} dx.

10

Consider the function y = e^{x^{3}}.

a

Calculate \dfrac{d y}{d x}.

b

Hence find \int 3 x^{2} e^{x^{3}} dx.

11

Consider the function y = e^{ 3 x^{4} - 5} and hence find 36 \int x^{3} e^{ 3 x^{4} - 5} dx.

12

Consider the function y = \sin \left(x^{5}\right) and hence find \int x^{4} \cos \left(x^{5}\right) dx.

13

Consider the function y = \cos \left(x^{6} + 3 x^{5}\right) and hence find 15 \int \left( 2 x^{5} + 5 x^{4}\right) \sin \left(x^{6} + 3 x^{5}\right) dx.

14

Consider the function y = e^{ \sqrt x} and hence find \int \dfrac{4e^{ \sqrt x}}{\sqrt x} \ dx.

15

Find the following indefinite integrals:

a

\int 28\left(6x^3 + 1 \right) \left(3x^4 + 2x \right)^6 \ dx

b

\int \sin3x \cos 3x \ dx

c

\int 2e^{ \sin x} \cos x \ dx

d

\int (x + 2) e^{ 3 x^{2} + 12x} \ dx

Integration as reverse of differentiation
16

Consider the function y = \dfrac{\cos x}{e^x}.

a

Calculate \dfrac{d y}{d x}.

b

Hence find \int \dfrac{\sin x + \cos x}{e^x} dx.

17

Consider the function y = e^x \sin x.

a

Calculate \dfrac{d y}{d x}.

b

Hence find \int 3e^x(\sin x + \cos x) \ dx.

18

Consider the function y = \tan x.

a

Calculate \dfrac{d y}{d x} using \tan x =\dfrac{\sin x}{\cos x}.

b

Hence find \int \dfrac{5}{\cos^2 x} dx.

Rearrangement method
19

Given that \sin 3 t = 3 \sin t - 4 \sin ^{3}\left(t\right)

a

Make 4 \sin ^{3}\left(t\right) the subject.

b

Hence find \int 3 \sin ^{3}\left(t\right) dt.

20

Consider the function y = {x}{e^x}.

a

Calculate \dfrac{d y}{d x}.

b

Hence show that xe^x = \int xe^x \ dx + \int e^x \ dx.

c

Rearrange the expression in part (b) to find \int xe^x \ dx.

21

Consider the function y = \dfrac{x}{e^x}.

a

Calculate \dfrac{d y}{d x}.

b

Hence show that \dfrac{x}{e^x} = \int \dfrac{1}{e^x} \ dx - \int \dfrac{x}{e^x} \ dx.

c

Rearrange the expression in part (b) to find \int \dfrac{x}{e^x} \ dx.

22

Consider the function y = x \cos x.

a

Calculate \dfrac{d y}{d x}.

b

Use the rearrangement method to find \int x \sin x \ dx.

Further anti-differentiation
23

Consider the derivative function y' = x e^{x^{2}}.

a

Find a general equation for y, the antiderivative of y'.

b

Find the equation for y, given that its graph passes through the point \left(0, 2\right).

24

Consider the derivative function y' = e^{ - 2 x }.

a

Find a general equation for y, the antiderivative of y'.

b

Find the equation for y, given f \left( 0 \right) = - 3.

25

Consider the function y = 2 x \sin 3 x.

a

Calculate \dfrac{d y}{d x}.

b

Hence find \int x \cos 3 x dx.

26

Consider the functon y =2 x e^{ 2 x}.

a

Calculate \dfrac{d y}{d x}.

b

Hence find \int 4 x e^{ 2 x} dx.

27

Find the following indefinite integrals, using c as the constant of integration:

a
\int p\left(2p^2+3\right)^3dp
b
\int 4x\left(2x^2+3\right)^7dx
c
\int 16x^3\left(x^4-3\right)^5dx
d
\int 4\left(5x^4+16x^3\right)\left(x^5+4x^4-3\right)^6dx
e
\int \left(10x^3+3x^2+x\right)\left(5x^4+2x^3+x^2\right)^3dx
f
\int 12e^x\left(e^x+2\right)^3dx
g
\int 6e^x\left(2e^x+3\right)^5dx
h
\int 8xe^{x^2}dx
i
\int -9b^2e^{b^3}db
j
\int 3\sin x\cos ^5\left(x\right)dx
k
\int 4\sin x\cos ^7\left(x\right)dx
l
\int 2\cos x\sin ^5\left(x\right)dx
m
\int 3\cos 3x\sin ^3\left(3x\right)dx
n
\int -5\sin 3x\cos ^4\left(3x\right)dx
Sign up to access Worksheet
Get full access to our content with a Mathspace account

Outcomes

3.2.3

establish and use the formula ∫x^n dx=1/(n+1) x^(n+1)+c for n≠−1

3.2.4

establish and use the formula ∫e^x dx=e^x+c

3.2.5

establish and use the formulas, ∫sin⁡xdx=−cos⁡x+c and ∫ cosx dx =sinx +c

3.2.7

determine indefinite integrals of the form ∫ f(ax-b) dx

3.2.9

determine f(x), given f′(x) and an initial condition f(a)=b

What is Mathspace

About Mathspace