topic badge

7.01 Graphing linear functions

Lesson

 

Using the gradient and $y$y-intercept to sketch the graph of a line

If we know the gradient and the $y$y-intercept of a line, then we can state its equation or rule. A line with gradient $m$m and $y$y-intercept $c$c has equation $y=mx+c$y=mx+c.

The gradient-intercept form

$y=mx+c$y=mx+c

where $m$m is the gradient and $c$c is the $y$y-intercept

 

Here are some examples:

$y=2x+4$y=2x+4 has gradient $2$2 and $y$y intercept = $4$4

$y=-3x-7$y=3x7 has gradient $-3$3 and $y$y intercept = $-7$7

$y=\frac{1}{2}x+10$y=12x+10 has gradient $\frac{1}{2}$12 and $y$y intercept = $10$10

A quick method to sketch the graph of a line is to use the $y$y intercept as the starting point and then the gradient to find other points on the line.

 

Practice questions

Question 1

Plot the graph of the line whose gradient is $-3$3 and passes through the point $\left(-2,4\right)$(2,4).

  1. Loading Graph...

Question 2

Consider the linear equation $y=3x+1$y=3x+1.

  1. State the $y$y-value of the $y$y-intercept of this line.

  2. Using the point $Y$Y as the $y$y-intercept, sketch a graph of the equation $y=3x+1$y=3x+1.

    Loading Graph...

Question 3

Sketch a graph of the line $y=\frac{1}{2}x-2$y=12x2 using its gradient and $y$y-intercept.

  1. Loading Graph...

 

Horizontal and vertical lines

On horizontal lines, the $y$y-value is always the same for every point on the line. They have the form $y=k$y=k.

On vertical lines, the $x$x-value is always the same for every point on the line. They have the form $x=k$x=k.

 

Practice questions

Question 4

Draw a graph of the line $y=-3$y=3.

  1. Loading Graph...

Question 5

Graph the line $x=-6$x=6.

  1. Plot the line represented by the given points on the number plane.

    Loading Graph...

 

What is Mathspace

About Mathspace