If we know that two figures are similar, then we know that any angle in one figure will be equal to a matching angle in the other.
Additionally, the sides opposite matching angles in the two figures will be corresponding, with the ratio between their distance being some fixed scale factor. In fact, any corresponding distances in the two figures will be in this fixed ratio.
Knowing that two figures are similar allows us to deduce information in one figure, using the given angles and sides in the other.
Corresponding angles in similar figures can be easily matched up by pairing of angles of the same size. In the case where the figures have multiple angles of the same size, we can also use an angle's neighbouring angles as another requirement to be fulfilled.
For example, in the similar figures below, both have two angles of size 98^{\circ}.
Since the neighbouring angles of \angle ABC have sizes 126^{\circ} and 117^{\circ}, we know that it must correspond with \angle PQR, and not with \angle RST.
If we know which angles are corresponding in two similar figures, then the sides opposite corresponding angles will also be corresponding.
If we do not know which angles are corresponding, we can try to determine which sides are corresponding using their relative lengths.
Since each pair of corresponding sides must have their distances in the same ratio, we can use any given side lengths to determine which side lengths must be matching.
In the case where we are given all the side lengths for both similar figures, we can match up all the sides in the figures such that they all have the same ratio between their lengths.
These two triangles are similar.
Find the value of m.
Find the value of n.
Corresponding angles of similar figures are equal.
Corresponding sides of similar figures are in the same ratio.
If we are given that two figures are similar and are also given two corresponding distances, we can work out the scale factor.
The scale factor is equal to a larger distance divided by the corresponding smaller distance.
If we know the scale factor between two similar figures, then any distance in one figure can be used to calculate the corresponding distance in the other figure.
If the known distance is in the smaller figure, we can multiply by the scale factor to find the corresponding distance in the larger figure.
If the known distance is in the larger figure, we can divide by the scale factor to find the corresponding distance in the smaller figure.
The triangles in the diagram below are similar:
What is the scale factor from \triangle ABC to \triangle A'B'C'?
Jenny wants to find the height of her school's flag pole. During recess, she measures the length of the flag pole's shadow to be 335 \text{ cm} Her friend then measures her own shadow, which turns out to be 95 \text{ cm}.
The triangles formed by casting these shadows are similar.
If Jenny is 160 \text{ cm} tall, what is the height of the flag pole?
Round your answer to the nearest whole centimetre.
The scale factor between two similar figures is the ratio of distances between the larger and smaller figure.
For example: if the distances in one similar figure are twice those of another, the scale factor between these similar figures is 2.