topic badge

1.02 Non-positive indices

Worksheet
The zero index
1

Consider the following pattern:

\begin{aligned} 2^3 &= 8 \\ 2^2 &= 4 \\ 2^1 &= 2 \\ 2^0 &= ⬚ \\ 2^{-1} &= ⬚ \end{aligned}
a

Complete the following sentence:

Each time the power of 2 decreases by 1, the number on the right is divided by .

b

Complete the pattern.

2

Evaluate the following expressions:

a
6^{0}
b
3^{3} \times 3^{0}
c
7^{2} \div 7^{2}
d
\left( 6 \times 19\right)^{0}
e
\left( - 3 \right)^{0}
f
- 4^{0}
g
\left(\dfrac{2}{3}\right)^{0}
h
7 \left( 14 \times 18\right)^{0}
i
-100^{0}
j
-9 \left( 12 \times 15\right)^{0}
k
2^{5} \times 11^{0}.
l
\dfrac{\left(10^{5}\right)^{3}}{10^{15}}
m
\dfrac{13^{10}}{\left(13^{5}\right)^{2}}
n
\dfrac{9^{7}}{9^{2} \times 9^{5}}
o
\dfrac{15^{4} \times 15^{2}}{15^{6}}
p
\dfrac{\left(14^{3}\right)^{4}}{14^{4} \times 14^{8}}
3

Complete the following statements:

a
\dfrac{6^{8}}{6^{8}} = 6^{⬚}
b
\dfrac{7^{⬚}}{7^{7}} = 7^{0}
c
\dfrac{4^{10}}{4^{⬚}} = 4^{0}
d
7^{⬚} = 1
Negative indices
4

Consider the following expressions:

i

Identify the base.

ii

Identify the power.

a
10^{ - 7 }
b
2^{ - 4 }
c
13^{-10}
d
\left(-5\right)^{-8}
5

Complete the following tables:

a
2^{5}2^{4}2^{3}2^{2}2^{1}2^{0}2^{-1}
3216
b
\quad10^{5}\quad10^{4}\enspace10^{3}10^{2}10^{1}10^{0}10^{-1}
100\,00010\,000
c
3^{3}3^{2}3^{1}3^{0}3^{-1}3^{-2}3^{-3}
279
6

Express the following expressions with a positive index:

a
6^{ - 10 }
b
73^{ - 14 }
c
\left( - 9 \right)^{ - 7 }
d
9^{ - 1 }
e
17^{ - 6 }
f
55^{ - 1 }
g
\left( - 12 \right)^{ - 8 }
h
-45^{ - 5 }
i
-8^{ - 11 }
j
\left(-20\right)^{-3}
k
7^{-6}
l
\left(-5\right)^{-1}
7

Express the following expressions with a negative index:

a
\dfrac{1}{3}
b
\dfrac{1}{37}
c
\dfrac{1}{5}
d
\dfrac{1}{4^{7}}
e
\dfrac{1}{-15^{3}}
f
\dfrac{1}{10^{5}}
g
\dfrac{1}{\left(-24\right)^{10}}
h
\dfrac{1}{25^{3}}
i
\dfrac{1}{13^{11}}
j
\dfrac{1}{7^{8}}
k
\dfrac{1}{16^{12}}
l
\dfrac{1}{\left(-45\right)^{7}}
8

Complete the following statements:

a
\dfrac{1}{3^{2}} = 3^{⬚}
b
\dfrac{1}{6^{5}} = 6^{⬚}
c
\dfrac{1}{27} = 3^{⬚}
d
\dfrac{1}{5^{3}} = 5^{⬚}
e
\dfrac{1}{7^{11}} = 7^{⬚}
f
\dfrac{1}{64} = 4^{⬚}
g
\dfrac{1}{-9^{4}} = -9^{⬚}
h
\dfrac{1}{-32} = -2^{⬚}
9

Simplify the following expressions:

a
5^{11} \div 5^{ - 3 }
b
7^{ - 7 } \div 7^{5}
c
7^{ - 3 } \times 7^{ - 4 }
d
5^{ - 4 } \div 5^{ - 9 }
e
9^{0} \times 9^{ - 12 }
f
5^{13}\div 5^{-9}
g
10^{2} \div 10^{3}
h
100^{25} \div 100^{26}
i
\dfrac{2^{3}}{2^{5}}
j
\dfrac{\left(5^{2}\right)^{9} \times 5^{6}}{5^{40}}
k
\dfrac{\left(19^{2}\right)^{3}}{19^{ - 3 } \times 19^{ - 9 }}
l
\dfrac{-\left(8^{5}\right)^{2}}{8^{ - 2 } \times 8^{ - 12 }}
10

Evaluate:

a
4 \times 3^{ - 2 } + 8^{0}
b
6 \div 2^{ - 1 } + 4
c
\left(2+3^{-2}\right)\times 2^{-1}
d
\left(\dfrac{2}{3}\right)^{-3}\div 6^{-1}
11

Answer the following questions:

a

What is 0^4 equal to?

b

Explain why 0^{-4} is undefined.

12

Evaluate the following expressions:

a
6^{7} \times 6^{ - 7 }
b
4^{8} \times 4^{ - 6 }
c
3^{ - 8 } \times 3^{11}
d
5^{5} \times 5^{ - 7 }
e
4^{-4} \times 2^{-4}
f
12^{13} \div 12^{7} \div 12^{8}
g
5^{-2} \times 3^{-2}
h
\left(-4\right)^{3} \times \left(-4\right)^{-7}
i
7^{12} \div 7^{-7} \div 7^{17}
j
\dfrac{3^{ - 9 } \times 3^{ - 7 }}{3^{ - 14 }}
k
\dfrac{5^{7}\times 5^{-8}}{5^{-4}}
l
\dfrac{\left(-7\right)^{ - 11 } \times \left(-7\right)^{ - 4 }}{\left(-7\right)^{ - 14 }}
Sign up to access Worksheet
Get full access to our content with a Mathspace account

Outcomes

VCMNA302

Apply index laws to numerical expressions with integer indices.

VCMNA305

Extend and apply the index laws to variables, using positive integer indices and the zero index.

What is Mathspace

About Mathspace