Complete the following proof to show that \triangle KLN and \triangle MNL are congruent:
\text{ } \\ \begin{array}{cll} ⬚ \text{ is common} & \\ KL = MN &\text{(⬚)} \\ \angle KLN = ⬚ &\text{ (Alternate angles in parallel lines)} \\ \triangle NKL \equiv \triangle LMN &\text{(⬚)} \end{array}Prove that the following pairs of triangles are congruent:
\triangle PQR and \triangle STR
\triangle ABD and \triangle CBD
\triangle DEC and \triangle FEG
\triangle ACD and \triangle ACB
\triangle PFG and \triangle PYX
\triangle PQX and \triangle RQX
\triangle WXZ and \triangle YXZ
Given XZ bisects \angle WZY.
\triangle WBY and \triangle ZAX
Given XZ= WY.
Complete the following proof to show that \triangle AXB and \triangle CXD are similar:
\text{ } \\ \begin{array}{cll} \angle AXB = ⬚ &\text{(Vertically opposite angles)} \\ ⬚ = \angle XAB &\text{ (⬚)} \\ \triangle DEC ||| \triangle ABC &\text{(⬚)} \end{array}Prove that the following pairs of triangles are similar:
\triangle PQR and \triangle ABC
\triangle CDE and \triangle LMN
\triangle ZYC and \triangle ZXB
\triangle JKL and \triangle MNJ
\triangle JMN and \triangle JKL
\triangle ADE and \triangle ABC