topic badge

5.085 Trigonometric identities

Lesson

Symmetries

From previous lessons we discovered many symmetries in the functions for sine and cosine. Let's start with a recap of a few important relationships that arise from these symmetries.

By comparing the coordinates of the points around the circle we can create the following rules.

Symmetry formulae

If we focus on the $y$y-coordinate, we can find:

$\sin\left(\pi-\theta\right)$sin(πθ) $=$= $\sin\theta$sinθ
$\sin\left(\pi+\theta\right)$sin(π+θ) $=$= $-\sin\theta$sinθ
$\sin\left(2\pi-\theta\right)$sin(2πθ) $=$= $-\sin\theta$sinθ
$\sin\left(-\theta\right)$sin(θ) $=$= $-\sin\theta$sinθ

If we focus on the $x$x-coordinate, we can find:

$\cos\left(\pi-\theta\right)$cos(πθ) $=$= $-\cos\theta$cosθ
$\cos\left(\pi+\theta\right)$cos(π+θ) $=$= $-\cos\theta$cosθ
$\cos\left(2\pi-\theta\right)$cos(2πθ) $=$= $\cos\theta$cosθ
$\cos\left(-\theta\right)$cos(θ) $=$= $\cos\theta$cosθ

By using the definition $\tan\theta=\frac{\sin\theta}{\cos\theta}$tanθ=sinθcosθ we can create similar rules for $\tan\theta$tanθ. Try these for yourself in the practice question below.

Practice question

Question 1

Let $\theta$θ be an acute angle (in radians).

If $\tan\theta=0.52$tanθ=0.52, find the value of:

  1. $\tan\left(\pi-\theta\right)$tan(πθ)

  2. $\tan\left(\pi+\theta\right)$tan(π+θ)

  3. $\tan\left(2\pi-\theta\right)$tan(2πθ)

  4. $\tan\left(-\theta\right)$tan(θ)

 

Further symmetries

Let's look at the relationship between trigonometric functions of complementary angles, that is angles that add to $90^\circ$90° or $\frac{\pi}{2}$π2 radians.

From the diagram, we can see the triangle formed by the angle $\theta$θ to the point $P$P has its sides flipped to form the triangle at angle $\frac{\pi}{2}-\theta$π2θ to point $Q$Q. Since the $x$x- and $y$y-coordinates have swapped when comparing the two points, we can extract the rules:

Complementary angle relationships
$\sin\left(\frac{\pi}{2}-\theta\right)$sin(π2θ) $=$= $\cos\theta$cosθ
$\cos\left(\frac{\pi}{2}-\theta\right)$cos(π2θ) $=$= $\sin\theta$sinθ

We can also look at the relationship between trigonometric functions at an angle $\theta$θ compared to one rotated further by  $90^\circ$90° or $\frac{\pi}{2}$π2 radians.

Again, by comparing the $x$x- and $y$y-coordinates of point $P$P compared to point $Q$Q, we can extract the rules:

Further angle relationships
$\sin\left(\frac{\pi}{2}+\theta\right)$sin(π2+θ) $=$= $\cos\theta$cosθ
$\cos\left(\frac{\pi}{2}+\theta\right)$cos(π2+θ) $=$= $-\sin\theta$sinθ

Practice questions

Question 2

Fill in the blank with the acute angle that makes the statement true.

  1. $\sin$sin$\editable{}$°$=$=$\cos25^\circ$cos25°

Question 3

Simplify $\sin\left(90^\circ-y\right)\times\tan y$sin(90°y)×tany.

Question 4

Prove that $\frac{\sin x\sin\left(90^\circ-x\right)}{\cos x\cos\left(90^\circ-x\right)}=1$sinxsin(90°x)cosxcos(90°x)=1

 

Pythagorean identity

A very useful expression can be found by applying Pythagoras' theorem to the right-angled triangle formed in a unit circle. Consider the picture below.

 

Applying Pythagoras' theorem:

 

$a^2+b^2$a2+b2 $=$= $c^2$c2
$\left(\cos\theta\right)^2+\left(\sin\theta\right)^2$(cosθ)2+(sinθ)2 $=$= $1$1

Which can also be written as:

$\cos^2\theta+\sin^2\theta$cos2θ+sin2θ $=$= $1$1

This relationship holds for any angle $\theta$θ.

 

 

 

Pythagorean identity
$\cos^2\theta+\sin^2\theta$cos2θ+sin2θ $=$= $1$1

Worked examples

Example 1

Evaluate the expression $5\cos^2\left(80^\circ\right)+5\sin^2\left(80^\circ\right)$5cos2(80°)+5sin2(80°).

Although neither $\cos\left(80^\circ\right)$cos(80°) or $\sin\left(80^\circ\right)$sin(80°) can be written in exact form using decimals or surds, we can simplify the expression by recognising the Pythagorean identity.

$5\cos^2\left(80^\circ\right)+5\sin^2\left(80^\circ\right)$5cos2(80°)+5sin2(80°) $=$= $5\left(\cos^2\left(80^\circ\right)+\sin^2\left(80^\circ\right)\right)$5(cos2(80°)+sin2(80°))
  $=$= $5\times1$5×1
  $=$= $5$5
Example 2

Find the exact value of $\cos\theta$cosθ and $\tan\theta$tanθ given that $\sin\theta=\frac{12}{13}$sinθ=1213 and $\theta$θ is in the second quadrant.

Think: We can find $\cos\theta$cosθ using the Pythagorean identity and the additional information about the quadrant will tell us if the ratio is positive or negative. One we know both $\sin\theta$sinθ and $\cos\theta$cosθ we can find $\tan\theta$tanθ using the definition $\tan\theta=\frac{\sin\theta}{\cos\theta}$tanθ=sinθcosθ

Do: Write out the Pythagorean identity and substitute the known value in.

$\cos^2\theta+\sin^2\theta$cos2θ+sin2θ $=$= $1$1
$\cos^2\theta+\left(\frac{12}{13}\right)^2$cos2θ+(1213)2 $=$= $1$1
$\cos^2\theta+\frac{144}{169}$cos2θ+144169 $=$= $1$1
$\cos^2\theta$cos2θ $=$= $1-\frac{144}{169}$1144169
$\cos\theta$cosθ $=$= $\pm\sqrt{\frac{25}{169}}$±25169
  $=$= $\pm\frac{5}{13}$±513

We have been given the additional information that $\theta$θ is in the second quadrant. In the second quadrant sine is positive but cosine and tangent will be negative. Hence, $\cos\theta=\frac{-5}{13}$cosθ=513.

Using $\tan\theta=\frac{\sin\theta}{\cos\theta}$tanθ=sinθcosθ, we find:

$\tan\theta$tanθ $=$= $\frac{\sin\theta}{\cos\theta}$sinθcosθ
  $=$= $\frac{12}{13}\div\frac{-5}{13}$1213÷​513
  $=$= $\frac{-12}{5}$125
 

Practice questions

Question 5

Answer the following questions given that $\cos y=-\frac{5}{13}$cosy=513, where $180^\circ180°<y<360°.

  1. In which quadrant does angle $y$y lie?

    Quadrant $I$I

    A

    Quadrant $II$II

    B

    Quadrant $III$III

    C

    Quadrant $IV$IV

    D
  2. Use a Pythagorean identity to find the value of $\tan y$tany.

Question 6

Simplify $\frac{1-\cos^2\left(\theta\right)}{1-\sin^2\left(\theta\right)}$1cos2(θ)1sin2(θ).

Question 7

Simplify $\left(\cos\theta-1\right)\left(\cos\theta+1\right)$(cosθ1)(cosθ+1).

Outcomes

1.2.14

prove and apply the angle sum and difference identities

What is Mathspace

About Mathspace